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Abstract. We discuss the notion of hierarchical concept (classifier) schemes.
Processes of construction, tuning and learning of hierarchical structures of con-
cepts (granules of knowledge) are presented. The proposed solution consists of
a generalised structure of feedforward neural-like network approximating the in-
termediate concepts similarly to traditional neurocomputing approaches. Funda-
mental works are also supported by a more practical part where implementation
and experimental verification of presented ideas is discussed. We provide the ex-
amples of compound concepts corresponding to the Bayesian and rule based clas-
sifiers, and show some intuition concerning their processing through the network.

1 Introduction

The question: “What is neurocomputing?” may be answered in many ways, depending
on context and the interests of the answering person. In this paper we would like to
bring to the table yet another way of viewing the idea of neurocomputing. We attempt
to define a framework for construction of classification support and concept approxi-
mation systems that are displaying features commonly attributed to the realm of neural
computing. These are:

– Construction of a system capable of performing complex tasks using (relatively)
simple computing units (neurons).

– Hierarchical structure that represents gradual formation of more complex entities
represented by network’s output from simpler building blocks (inputs and hidden
units).

– Flexibility and robustness originating in highly adjustable structure of units and
connections.

– Ability to learn from examples the desired setting of network parameters (weights).

The ability to adaptively learn the correct set of weights (network parameters) is in
the centre of our focus. The hierarchical neural-like structure for concept approximation
and/or classification is soulless if there is no efficient and robust way of adjusting it so
that it does what it is supposed to.

In this paper we attempt to show our view on the process of construction and tun-
ing of hierarchical structures of concepts (which can be also referred to as granules of
knowledge [14, 16, 17]). We address these structures as feedforward concept networks,



which can be regarded as a special case of hierarchical structures developed within
the rough-neural computing (RNC) methodology [9, 11, 12]. In particular, we consider
classifier networks, where the input concepts correspond to the classified objects’ be-
haviour with respect to the standard classifiers and the output (target) concept reflects
the final classification. The basic idea is that the relationship between such input and
output concepts is not direct but based on the internal layers of intermediate elements,
which help in more reliable transition from the basic information to possibly compound
classification goal. In this sense we create a neurocomputing scheme that uses concepts
as neurons.

The proposed scheme is formalised with use of analogies rooted in areas, such as
artificial neural networks [4, 5], ensembles of classifiers [2, 15, 27], and layered learn-
ing [24]. We show how the presented ideas can be exploited within wider frameworks
of rough-neural and granular computing. We also make an effort to provide examples
of actual models outlined in our earlier, application-oriented papers. This paper is – to
large extent – a summarization and discussion of ideas already presented in our previous
publications [20, 22, 23].

The paper starts with short section that presents motivation (section 2) behind un-
dertaking this kind of investigations. Then, in section 3 we introduce general ideas that
drive the construction of compound, multilayer concept schemes. These ideas are fur-
ther extended and formalised in sections 4 and 5. The proposed general framework is
then illustrated with an example of real scheme called Normalising Neural Network that
implements a multilayer structure for Bayesian classifiers (section 7). After presenting
this example we return to more general considerations (section 8) staring with discus-
sion of possible use of proposed scheme in case of decision rule based classifiers and
developing this into some general ideas regarding construction and learning in more
general feedforward concept networks (subsections 8.1 and 8.2).

2 Motivation

If we take a look at the standard approach to classification and decision support with use
of learning systems, we quickly realize that it does not always fit the purpose. Equipped
with the hypothesis formation (learning) algorithm, we attempt to find a possibly direct
mapping from the input values to decisions. Such an approach does not always result in
success, because of various reasons.

First and foremost, the mapping from input to decision may not be learnable. The
amount of data we possess is insufficient to form any viable decision-making solution
that works in a single step. The target concept is by nature more complex and have to
be decomposed into smaller blocks, sub-concepts, that are possible to learn.

We try to address the situation when the desired solution should be more fine-
grained, namely, it should have an internal structure. Although possibly hard to find
and learn, such architecture repays us by providing significant extensions in terms of
flexibility, generality and expressiveness of the yielded model.

Another value-added effect we want to get from proposed hierarchical solution is
the ability to extend and adapt the classification system once new data arrives, without
the need for complete reconstruction of existing model.



3 Hierarchical learning and classification

In this paper we will be using the notion of concept and classifier exchangeably. In our
understanding the classifier is a tool for describing the concept (of a decision class).
Reversely, for a concept we may want to construct a classifier, i.e. an algorithm that
helps us in deciding whether a given observation (data point) is a positive or negative
example for this concept.

Let us start by explaining how we intend to treat the notion of a concept. In general,
a concept is an element drawn from a parameterised concept space. By a proper setting
of these parameters we choose the right concept. Note, that we do not initially demand
that all concepts come from the same space. Essentially, a concept is a (sub)set but, due
to the properties of space it comes from, it may display some special features, possess
internal structure and so on.

Such an informal definition of a concept space can be referred to the notion of
an information granule system S = (G,R, Sem), where G is a set of parameterised
formulas called information granules, R is a (parameterised) relation structure, and
Sem is the semantics of G in R (cf. [17]). In our approach, we focus especially on
the concept parameterisation and ability of parameterised construction of new concepts
from the others. In this sense, our understanding of a concept space can be regarded
as equivalent to information granule system and the terms concept and granule can be
treated as complementary.

One should remember that that the whole scheme we want to bring here is aimed at
construction of knowledge representation and classification system from experimental
data. Therefore, we have to recall some of the basics regarding the task of learning how
to classify (describe) concepts.

In the typical task of classification (cf. [7]) we are given a set of examples (training
sample) T drawn from some universe X . We assume that every example u ∈ X is rep-
resented by a vector of attribute (feature, measurement) values a1(u), ..., an(u), where
ai : X → Ai, i = 1, ..., n. The set Ai is referred to as the attribute value space. The
examples are also labeled with the value of decision d, treated as an additional attribute.
We denote by Ck ⊂ X the k-th decision class, i.e., the subset of examples labelled with
decision value k ∈ {1, ..., r}.

Our goal in the classification problem is to find with some algorithm a hypothe-
sis h : X → {1, ..., r}, i.e. a mapping from X onto the set of decision values. Us-
ing the convention of this paper we may say that in classification the decision classes
C1, . . . , Cr are the concepts we attempt to describe by providing h. Mapping h is often
assumed to be highly consistent with the training sample T . In other words, one expects
that d(u) should be similar to h(u) for u ∈ T . Mapping h should be also – what is far
more important – inductively correct, which means that it should be properly applicable
for new, not labeled examples. Consistency with the training data hardly provides the
inductive correctness. It is often better to base on less accurate, but less complex models
(cf. [8]).

Now, let a concept represent an element acting on the basis of information origi-
nating from other concepts or directly from the data source. To better depict the whole
structure, it is convenient to exploit the analogy with artificial neural networks. In this
case, a concept corresponds to a signal transmitted through a neuron – the basic com-



puting unit. Dependencies between concepts, their precedence and importance, are rep-
resented by weighted connections between nodes. Similarly to the feedforward neural
network, operations can be performed from bottom to top. They can correspond to the
following goals:

Construction of compound concepts from the elementary ones. It can be observed
in the case-based reasoning (cf. [6]), layered learning (cf. [24]), as well as rough mereol-
ogy [13] and rough neural-computing [9, 11, 12], where we want to approximate target
concepts step by step, using the simpler concepts that are easier to learn directly from
data.

Construction of simple concepts from the advanced ones. It can be considered for
the synthesis of classifiers, where we start from compound concepts (granules) reflect-
ing the behaviour of a given object with respect to particular, often compound classifi-
cation systems, and we tend to obtain a very simple concept of a decision class where
that object should belong to [12, 14].

The first goal corresponds to generalisation of simple concepts while the second –
to instantiation of general concept in a simpler, more specialized concept (cf. [20]). Ob-
viously, we do not assume that the above are the only possible types of constructions.
For instance, in a classification problem, decision classes can have a compound seman-
tics requiring gradual specification corresponding to the first type of construction. Then,
once we reach an appropriate level of expressiveness, we follow the second scenario to
synthesize those compound specifications towards obtaining the final response of the
classifier network.

4 General network architecture

When considering hierarchical structures for compound concept formation, several is-
sues pop-up. At the very general level of hierarchy construction/learning, one has to
make choices with respect to homogeneity and synchronization. We mention below
how these factors determine the complexity of construction task.

Homogeneous vs. heterogeneous. At each level of hierarchy we make choice of the
type of concepts to be used. In the simplest case each node implements the same type
of mapping. We have studied such a fully homogeneous system in [22, 23] to express
probabilistic classifiers based on the rough set reducts [15] and Naı̈ve Bayes approach.
This approach, dubbed Normalising Neural Networks (NNNs), is described later in the
paper. First step towards heterogeneity is by permitting different types of concepts to be
used at various levels in hierarchy, but retaining uniformity across a single layer. This
creates typical layered learning model [24]. Finally, we may remove all restrictions on
the uniformity of models in the neighbouring nodes. In this way we produce a structure
which is more general but harder to control.



Synchronous vs. asynchronous. This issue is concerned with the layout of connec-
tions between nodes. If it has easily recognizable layered structure we regard it to be
synchronized. In other words, we can analyze the hierarchical structure in a level-by-
level manner and, consequently, have an ability to clearly indicate the level of abstrac-
tion for composite concepts. If we permit the connections to be established on less
restrictive basis, the synchronization is lost. Then, the nodes from non-consecutive lev-
els may interact and the whole idea of simple-to-compound precedence of concepts
becomes less usable.

The layouts of classifier networks for various levels of homogeneity and synchro-
nization are illustrated in Figure 1. The simplest case of homogeneous and synchronized
network corresponds to Figure 1a. The partly homogeneous, synchronized architecture
that we are attempting to formalize in this paper is shown in Figure 1b.

Figures 1c and 1d represent the harder cases. For a moment we do not attempt to
address those eventualities. One can see that there are also other cases possible. For
instance, we can consider asynchronous but homogeneous network described in [1],
where the nodes correspond semantically to the complex concepts we want to approx-
imate although syntactically the operations within the nodes remain of the same type,
regardless of whether those nodes represent the advanced of very initial concepts.

 

a. b. 

c. d. 

Fig. 1. Examples of network layout: a. both synchronized and homogeneous; b. synchronized and
partly heterogeneous; c. synchronized and heterogeneous; d. neither synchronized nor homoge-
neous.



5 Hierarchical concept schemes

In this section we present a general notation for feedforward networks transmitting the
concepts. Since we restrict ourselves to the two easier architecture cases illustrated by
Figures 1a and 1b, we can consider the following notion:

Definition 1. By a hierarchical concept scheme we mean a tuple (C,MAP). C =
{C1, . . . , Cn, C} is a collection of the concept spaces (information granule systems),
where C is called the target concept space. The concept mappings

MAP = {mapi : Ci → Ci+1 : i = 1, . . . , n, Cn+1 = C} (1)

are the functions linking consecutive concept spaces.

We assume that any feedforward concept network corresponds to (C,MAP), i.e. each
i-th layer provides us with the elements of Ci. In case of total homogeneity, we have
equalities C1 = · · · = Cn = C and map1 = · · · = mapn = identity. For partly ho-
mogeneous architecture, some of the mappings can remain identities but we should also
expect non-trivial mappings between the concepts of entirely different nature, where
Ci 6= Ci+1.

Following the structure of feedforward neural network, we calculate the inputs to
each next layer as combinations of the concepts from the previous one. In general,
we cannot expect the traditional definition of a linear combination to be applied. Still,
the intuition says that the labels of connections should somehow express the level of
concepts’ importance in formation of the new ones. We refer to this intuition in terms
of so called generalised linear combinations:

Definition 2. Feedforward concept scheme is a triple (C,MAP,LIN ), where

LIN =
{
lini : 2Ci×Wi → Ci : i = 1, . . . , n

}
(2)

defines generalised linear combinations over the concept spaces Ci. For any i = 1, . . . , n,
Wi denotes the space of the combination parameters. If Wi is a partial or total ordering,
then we interpret its elements as weights reflecting the relative importance of particular
concepts in construction of the resulting concept.

Let us denote by m(i) ∈ N the number of nodes in the i-th network layer. For any i =
1, . . . , n, the nodes from the i-th and (i+1)-th layers are connected by the links labeled
with parameters w

j(i)
j(i+1) ∈ Wi, for j(i) = 1, . . . ,m(i) and j(i+1) = 1, . . . , m(i+1).

For any collection of the concepts c1
i , . . . , c

m(i)
i ∈ Ci occurring as the outputs of the

i-th network’s layer in a given situation, the input to the j(i+1)-th node in the (i+1)-th
layer takes the following form:

c
j(i+1)
i+1 = mapi

(
lini

({(
c
j(i)
i , w

j(i)
j(i+1)

)
: j(i) = 1, . . . ,m(i)

}))
(3)

The way of composing functions within the formula (3) requires, obviously, further
discussion. In this paper, we restrict ourselves to the case of Figure 2a, where mapi and



lini are stated separately. However, parameters w
j(i)
j(i+1) could be also used directly in a

generalised concept mapping

genmapi : 2Ci×Wi → Ci+1 (4)

as shown in Figure 2b. These two possibilities reflect construction tendencies described
in Section 3. Function (4) can be applied to construction of more compound concepts
parameterised by the elements of Wi, while the usage of Definitions 1 and 2 results
rather in potential syntactical simplification of the new concepts (which can, however,
still become more compound semantically).

One can see that function genmap and the corresponding illustration 2b refer di-
rectly to the ideas of synthesizing concepts (granules, standards, approximations) known
from rough-neural computing, rough mereology, and the theory of approximation spaces
(cf. [9, 14, 17]). On the other hand, splitting genmap’s functionality, as proposed by
formula (3) and illustrated in 2a, provides us with a framework more comparable to
the original artificial neural networks and their supervised learning capabilities (cf. [23,
22]).

6 Weighted compound concepts

Beginning with the input layer of the network, we expect it to provide the concepts-
signals c1

1, . . . , c
m(1)
1 ∈ C1, which will be then transmitted towards the target layer

using (3). If we learn the network related directly to real-valued training sample, then
we get C1 = R, lini can be defined as classical linear combination (with Wi = R), and
mapi as identity. An example of a more compound concept space originates from our
previous studies [22, 23]:

Example 1. Let us assume that the input layer nodes correspond to various classifiers
and the task is to combine them within a general system, which synthesizes the input
classifications in an optimal way. For any object, each input classifier induces possibly
incomplete vector of beliefs in the object’s membership to particular decision classes.
Let DEC denote the set of decision classes specified for a given classification problem.
By the weighted decision space WDEC we mean the family of subsets of DEC with
elements labelled by their beliefs, i.e.:

WDEC =
⋃

X⊆DEC

{(k, µk) : k ∈ X,µk ∈ R} (5)

Any weighted decision µ̃ = {(k, µk) : k ∈ Xeµ, µk ∈ R} corresponds to a subset Xeµ ⊆
DEC of decision classes for which the beliefs µk ∈ R are known.

7 Normalising Neural Networks

In this section we present detailed description of a classifier network for a particular
type of probabilistic classifier. This work is more application-oriented and has been
previously reported in [23]. The model that employs Bayesian classifiers as building
blocks is dubbed Normalising Neural Network (NNN for short), as the transition func-
tions used have the normalising ability (see subsection 7.3).
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Fig. 2. Production of new concepts in consecutive layers: a. the concepts are first weighted and
combined within the original space Ci using function lini and then mapped to a new concept in
Ci+1; b. the concepts are transformed directly to the new space Ci+1 by using the generalised
concept mapping (4).

7.1 The starting point – the Naı̈ve Bayes classifier

An example of the model, which is approximately consistent with the training cases,
is the Naı̈ve Bayes classifier. Although it ignores the attribute dependencies derivable
from the data, it is proven to behave in a way very close to optimal in many classification
problems [3]. It establishes h on the basis of probabilities Pr(·) estimated from sample
T . The estimates are very simple, based on counting the occurrence of the attribute-
value patterns in data (cf. [7, 8]). We use them as follows:

h(u) = arg maxk∈{1,...,r} Pr(d = k)
∏n

i=1 Pr(ai = ai(u)|d = k) (6)

In the next subsections, we are also going to refer to an extended version of Naı̈ve Bayes
classifier, which is more flexible and less dependent on the ”Naı̈ve” assumptions about
data independence. Let us present it using (natural) logarithms of probabilities, which
makes it possible to replace the product in the above formula with the sum, as well as to
change the outcome range from [0,1] to the entire real domain. The extended classifier
uses the weighted sum of logarithms of the attribute probabilities:

h(u) = arg maxk v0 log Pr(d = k) +
∑n

i=1 vi log(Pr(ai = ai(u)|d = k)) (7)

Weights vi determine the importance of attributes ai in classification process. One of
main strengths of NNNs is the existence of a method for learning these weights using
the backpropagation-like technique for this generalised neural network model.

7.2 The structure of Normalising Neural Network

Given the list of the classifier components (like e.g. single attributes in the Naı̈ve Bayes
method), we put to the input layer neurons responsible for processing their classifica-
tion preferences. We assume that each component provides the vector of r real values



expressing how it is likely to classify each given example to particular decision class.
The difference with respect to the standard artificial network is that now we are going
to combine the vectors instead of single real values.

The input to the neuron is a collection of vectors and the output is going to be a
vector of r real values too. Abbreviation NNN comes from the fact that the weighted
sums of vectors undergo normalization by means of the neuron transition functions
φ : Rr →4r−1 into the (r − 1)-dimensional simplex of probabilistic distributions.

The structure of NNN with one hidden layer is presented in Figure 3. Vectors xi ∈
Rr correspond to the classifier components for i = 0, ..., n. 1 Each j-th neuron in the
hidden layer, for j = 1, ..., m, takes as an input the vector sj ∈ Rr and provides as
output the vector yj = φ(sj), where yj ∈ 4r−1 and φ : Rr → 4r−1. The input to the
output neuron is denoted by t ∈ Rr and its output takes the form of h = φ(t), which is
the result of the NNN calculations. Vectors s1, ..., sm, t ∈ Rr are the weighted sums of
the outcomes of previous layers, i.e.:

t =
∑m

j=1 wjyj and sj =
∑n

i=0 vijxi for j = 1, ..., m (8)

Note, that this setting follows the general scheme for concept composition intro-
duced in previous section (section 1).

Fig. 3. The architecture of NNN with one hidden layer.

7.3 The NNN transition functions

Transition functions in NNN should be defined in a way that assures both the proper be-
haviour of calculation procedures and direct interpretation in extended neural network
model. They should comply to some conditions, which generalise those formulated for

1 Iteration i = 0, ..., n is consistent with the application described in the next sections.



classical transition functions (cf. [4, 5, 7]). In NN we use (mostly sigmoidal) monotone
functions. In case of NNN, one can say that transition function φ : Rr → 4r−1 is
monotone, if it satisfies the following:

1. Inequality s[k] > s[l] between the input vector coordinates results in inequality
φ(s)[k] > φ(s)[l] between the output vector coordinates, for k, l = 1, ..., r.

2. The increase in the input vector coordinate s[k] results in increase of the corre-
sponding output vector coordinate φ(s)[k], as well as decrease of the other coordi-
nates φ(s)[l], for l 6= k.

We will use the following monotone function φα : Rr → 4r−1, where parameter
α > 0 determines the steepness of transition:

φα(s) =
〈

eαs[1]

∑r
l=1 eαs[l]

, . . . ,
eαs[k]

∑r
l=1 eαs[l]

, . . . ,
eαs[r]

∑r
l=1 eαs[l]

〉
(9)

Behavior of φα is illustrated in Figure 4, for two decision classes, i.e. r = 2.

Fig. 4. Coordinate y[1] of function y = φα(s) for α = 1 and s ∈ R2.

In the next subsection we generalise the backpropagation algorithm [4, 5, 8] in purpose
of tuning the NNN weights. The advantage of using sigmoidal functions in this method
is the way of calculating their derivatives. Figure 5 shows that φα generalises the be-
haviour of classical sigmoidal functions also at this level.

7.4 Backpropagation in NNN

The key issue is to equip the NNNs with an analogue of backpropagation procedure (cf.
[4, 5]). In a nutshell, in the classical neural network model there exists effective method
for calculating the error (gradient) ratios used in the weight updates. The error values
for the output layer can be easily derived from the differences between the network
outcomes and true answers for the training cases. For the hidden layers, the errors are
calculated on the basis of linear combination of the error components propagated from
the next layer.
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Fig. 5. Derivative matrix Dφα(s) for the function φα : Rr →4r−1 defined by (9).

The above method can also be applied in case of NNNs. Let us denote by d =
〈d[1], . . . , d[r]〉 the distribution, which we would like to obtain for a given training
example. Let us consider the error function

E = 1
2

∑r
k=1(h[k]− d[k])2 (10)

where h = 〈h[1], . . . , h[r]〉 is the output of NNN, as shown in Figure 3. Formula 10
is the normalized Euclidean distance between probabilistic distributions [19]. Its upper
bound equals 1 and it is reached only if the two distributions have ones at different
positions (e.g., 〈0, 0, 1, 0, 0〉, 〈0, 1, 0, 0, 0〉), i.e. if the output h is totally incorrect in
comparison to d for a given training example.

Just like in the classical approach, we use negative gradient of E to tune the network
weights. We treat gradient of (10) as the function of the weight vectors:

∂E
∂wj

=
〈
h− d

∣∣∣ ∂h
∂wj

〉
where ∂h

∂wj
=

〈
∂h[1]
∂wj

, . . . , ∂h[r]
∂wj

〉
(11)

Let us recall that h = φ(t) for φ : Rr →4r−1 and t =
∑m

j=1 wjyj . We obtain

[
∂h

∂wj

]T

= Dφ(t) [yj ]
T (12)

where Dφ denotes the derivative matrix of φ. Further, let us consider

∂E
∂vij

=
〈
h− d

∣∣∣ ∂h
∂vij

〉
(13)

Let us recall that yj = φ(sj) for sj =
∑n

i=0 vijxi, j = 1, ..., m. We obtain

[
∂h

∂vij

]T

= Dφ(t)wjDφ(sj) [xi]
T (14)

Formula (14) provides an interpretation similar to that concerning backpropagation, de-
scribed at the beginning of this subsection. For the consecutive layers, the error vectors
are calculated on the basis of the error components propagated from the next layer. The
way of calculations of Dφ(t) and Dφ(sj) depends on the choice of φ. In our research
we apply function φα introduced in Section 7.3.



7.5 NNNs for Bayesian classification

Now we show how to implement the concept of NNN in connection with the Naı̈ve
Bayes scheme. We consider the NNN architecture described in Figure 3. Given an ex-
ample u ∈ X to be classified, for each i = 1, ..., n, we put

xi = 〈log Pr(ai = ai(u)|d = 1), . . . , log Pr(ai = ai(u)|d = r)〉 (15)

We also add a special input that corresponds to the bias connection in a classical multi-
layer, feedforward neural network:

x0 = 〈log Pr(d = 1), . . . , log Pr(d = k), . . . , log Pr(d = r)〉 (16)

For each j = 1, ..., m, we get the following formula for the coordinates of the input
sj ∈ Rr to the j-th neuron in the hidden layer:

sj [k] = v0j log Pr(d = k) +
∑n

i=1 vij log Pr(ai = ai(u)|d = k) (17)

It corresponds to the extended Naı̈ve Bayes classifier (7). Since the NNN transition
function φ is assumed to be monotone also in the sense of the properties presented in
subsection 7.3, we obtain that arg maxk sj [k] = arg maxk yj [k]. Hence, if we classify
cases using a single neuron with output yj calculated from inputs (15,16), then the most
probable decision class coincides with that given by (7).

Construction of the hidden layer with m neurons enables to learn automatically,
using the generalised backpropagation introduced in Section 7.4, the coefficients of the
ensemble of the weighted Naı̈ve Bayes classifiers (7) and then – to synthesize them at
the level of the output neuron h = φ(t). Such an approach closely follows the idea of
classifier ensemble as introduced in [2].

In the next subsection we show the experiments with the application of function φα.
Used in the structure from Figure 3, φα results with the vector coordinates

yj [k] =
Pr(d = k)αv0j

∏n
i=1 Pr(ai = ai(u)|d = k)αvij

∑r
l=1 Pr(d = l)αv0j

∏n
i=1 Pr(ai = ai(u)|d = l)αvij

(18)

at the level of the hidden layer, and with the final output coordinates

h[k] =

∏m
j=1 eαwjyj [k]

∑r
l=1

∏m
j=1 eαwjyj [l]

(19)

Vectors yj can take the form of arbitrary elements of4r−1 except its vertices. h can ap-
proach a vertex of4r−1 only up to the vector of the form 〈 1

eα+r−1 , ..., eα

eα+r−1 , ..., 1
eα+r−1 〉.

This is why we decided to learn the NNNs using the reference vectors taking the fol-
lowing form for the training case u ∈ T :

d[k] =
{

eα

eα+r−1 iff d(u) = k
1

eα+r−1 iff d(u) 6= k
(20)

Using (20) decreases the risk of overfitting, what was confirmed by experiments.



Such change is quite natural if we take into account the fact that decision distribu-
tions estimated from the training sample T may only partially reflect the actual place-
ment of decision classes in the universe of examples. By attaching non-zero probabil-
ities to the values of decision other than the one actually observed in data we allow
further variations in decision distributions that may happen when new, unseen objects
arrive. The specific assignment of t[i] is devised in a way that assures compatibility with
network output and error formula (10).

7.6 Experiments with NNN

We implemented the generalised backpropagation algorithm described in subsection 7.4
and applied it to learning the NNN model described in subsection 7.5. Several data sets
of different size and layout have been selected for this purpose (see Table 1). In most
cases the split into training and test samples is inherited with the data set. The main
observed value in all experiments is the ratio (percentage) of correctly classified objects
in the training and testing sets. The presented results are averaged over several algorithm
runs (usually 20 or more). They are compared with the results obtained with use of
classical Naı̈ve Bayes classifier. Experiments were also repeated with different choice
of the NNN parameters. The results shown in Table 1 are repeated from publication
[23].

The used data sets are taken from [25]. These are standard, well described bench-
mark data tables for which it is possible to find good reference results (see e.g. [8]).
DNA small is derived from the original table by taking only 20 attributes (out of 60),
which are known to provide the largest amount of information (cf. [25]); DNA large is
the binary version of original data. Soybean and primary tumor contain missing
values.

The experiments were performed using the NNN network with one hidden layer
composed 30-50 neurons in the hidden layer and the neuron transition function φα for
α = 2. In case of all data sets it was possible to obtain good classification results on
training samples after reasonably small number of iterations of backpropagation algo-
rithm (running about 2000 iterations by default). It confirms the idea of backpropagation
presented in Section 7.4. Figure 6 illustrates the beginning of the learning process for
the DNA small data set.

One thing that remains to be investigated is the possible dependence between the
number of units in hidden layer and the size and number of input (training) vectors.
These dependencies are in general unknown even for the classical neural network mod-
els. However, even some partial, heuristic method for establishing the optimal size of
network may help in making the process of NNN construction, learning and testing
much more effective.

The results are summarized in Table 1 together with these obtained using the Naı̈ve
Bayes (NB) classifier. They are generally close to the best known results obtained for
the data sets in discourse (cf. [8, 25]) and are significantly higher than some other clas-
sifier synthesis methods [22, 26]. In all cases the NNNs are noticeably better than NB
classifiers on the training sets. In three out of four train/test cases (except DNA small)
the same may be told about the testing set.



Fig. 6. Classification quality on the DNA small data set – the consecutive epochs of backpropa-
gation.

Relatively high classification rate (comparing to the best results known so far) on
the primary tumor data is encouraging. It was obtained as an average of several
10-fold cross-validation runs.

Table 1. Description of data sets (number of objects, attributes and decision classes) and summary
of experimental results (α = 2, m = 30).

Name train/test obj. attr./dec. NNN–test NB–test
DNA small 2000/1187 20/3 95.34 % 95.62%
DNA large 2000/1187 180/3 95.85% 93.68%
Soybean 307/376 35/19 91.14% 88.56%

SAT 4435/2000 36/6 82.96% 82.35%
primary tumor 339/CV-10 17/21 45.55% 45.86%

The results of the NNN model are parameterised by the number m of neurons in
the hidden layer and the value of parameter α. Figure 7 illustrates how the choice of
these two parameters influences learning process and classification results. In case of
the DNA small data set, there is noticeable tendency suggesting that the larger num-
ber of neurons in the hidden layer contributes to the reduction of overfitting effect.
These proves to be especially true for data sets with large number of decision values
(small representation for each decision class) like primary tumor and Soybean,
for which the increase (from 30 to 40 and more) in the number of hidden neurons
resulted in classification quality improvement. Optimal α value seems to be close to
α = 2, which can be deduced from Figure 7 and results (not presented) of the wider ex-
periment, comparing the α values between 1.5 and 5.0. More massive experiments are
obviously needed in purpose of finding optimal configurations of the NNN parameters.
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Fig. 7. Classification quality on DNA small data with changing m and α.

8 Feedforward Concept Networks

In the previous sections we have already presented some examples of neurocomput-
ing schemes for compound concept (classifier) construction. To go beyond and present
general ideas regarding widely understood concept networks employing rough-neural
paradigms, we present yet another example. This particular corresponds to the specific
classifiers – the sets of decision rules obtained using the methodology of rough sets [15,
27]. The way of parameterisation is comparable to the proceedings with classification
granules in [14, 17]. This example is for us a vehicle to introduce general concepts of
our approach and to show the synergy with classical rough set methodologies. Please
take note that throughout this section we will use the name of concept network and
classifier network interchangeably.

Example 2. Let DESC denote the family of logical descriptions, which can be used
to define decision rules for a given classification problem. Every rule is labeled with
its description αrule ∈ DESC and decision information, which takes – in the most
general framework – the form of µ̃rule ∈ WDEC. For a new object, we measure its
degree of satisfaction of the rule’s description (usually zero-one), combine it with the
number of training objects satisfying αrule, and come out with the number apprule ∈ R
expressing the level of rule’s applicability to this object. As a result, by the decision
rule set space RULS we mean the family of all sets of elements of DESC labeled by
weighted decision sets and the degrees of applicability, i.e.:

RULS =
⋃

X⊆DESC

{(α, µ̃, app) : α ∈ X, µ̃ ∈ WDEC, app ∈ R} (21)

Definition 3. By a weighted compound concept space C we mean a space of collec-
tions of sub-concepts from some sub-concept space S (possibly from several spaces),
labeled with the concept parameters from a given space V , i.e.:

C =
⋃

X⊆S

{(s, vs) : s ∈ X, vs ∈ V } (22)

For a given c = {(s, vs) : s ∈ Xc, vs ∈ V }, where Xc ⊆ S is the range of c, parameters
vs ∈ V reflect relative importance of sub-concepts s ∈ Xc within ci.



Just like in case of combination parameters Wi in Definition 2, we can assume a partial
or total ordering over the concept parameters. A perfect situation would be then to be
able to combine these two kinds of parameters while calculating the generalised linear
combinations and observe how the sub-concepts from various outputs of the previous
layer fight for their importance in the next one.

For the sake of simplicity, we further restrict ourselves to the case of real numbers,
as stated by Definition 4. However, in general Wi does not need to be in R. Let us
consider a classifier network, similar to Example 2, where decision rules are described
by parameters of accuracy and importance (initially equal to their support). A concept
transmitted by network refers to rules matched by an input object. The generalised
linear combination of such concepts may be parameterised by vectors (w, θ) ∈ Wi and
defined as a union of rules, where importance is expressed by w and θ states a threshold
for the rules’ accuracy.

Definition 4. Let the i-th network layer correspond to the weighted compound concept
space Ci based on sub-concept space Si and parameters Vi = R. Consider the j(i+1)-
th node in the next layer. We define its input as follows:

lini

({(
c
j(i)
i , w

j(i)
j(i+1)

)
: j(i) = 1, . . . , m(i)

})
=

=
{(

s,
∑

j(i):s∈Xj(i)
w

j(i)
j(i+1)v

j(i)
s

)
: s ∈ ⋃m(i)

j(i)=1 Xj(i)

} (23)

where Xj(i) ⊆ Si is simplified notation for the range of the weighted compound concept

c
j(i)
i and v

j(i)
s ∈ R denotes the importance of sub-concept s ∈ Si in c

j(i)
i .

Formula (23) can be applied both to WDEC and RULS. In case of WDEC, the sub-
concept space equals to DEC. The sum

∑
j(i):s∈Xj(i)

w
j(i)
j(i+1)v

j(i)
s gathers the weighted

beliefs of the previous layer’s nodes in the given decision class s ∈ DEC. In the case of
RULS we do the same with the weighted applicability degrees for the elements-rules
belonging to the sub-concept space DESC ×WDEC.

It is interesting to compare our method of the parameterised concept transformation
with the way of proceeding with classification granules and decision rules in the other
rough set based approaches [14, 15, 17, 27]. Actually, at this level, we do not provide
anything novel but rewriting well known examples within a more unified framework.
A more visible difference can be observed in the next sections, where we complete our
methodology.

8.1 Activation functions

The possible layout combining the concept spaces DEC, WDEC, and RULS with
the partly homogeneous classifier network is illustrated by Figure 8. Given a new object,
we initiate the input layer with the degrees of applicability of the rules in particular rule-
sets to this object. After processing with this type of concept along (possibly) several
layers, we use the concept mapping function

map(ruls) =
{(

k,
∑

(α,eµ,app)∈ruls:k∈Xeµ app · µk

)
: k ∈ ⋃

(α,eµ,app)∈ruls Xeµ
}

(24)



that is we simply summarize the beliefs (weighted by the rules’ applicability) in par-
ticular decision classes. Similarly, we finally map the weighted decision to the decision
class, which is assigned with the highest resulting belief. The intermediate layers in
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Fig. 8. The network-based object classification: the previously trained decision rule sets are acti-
vated by an object by means of their applicability to its classification; then the rule set concepts
are processed and mapped to the weighted decisions using function (24); finally the most appro-
priate decision for the given object is produced.

Figure 8 are designed to help in voting among the classification results obtained from
particular rule sets. Traditional rough set approach (cf. [15]) assumes specification of a
fixed voting function, which, in our terminology, would correspond to the direct con-
cept mapping from the first RULS layer into DEC, with no hidden layers and without
possibility of tuning the weights of connections. An improved adaptive approach (cf.
[27]) enables us to adjust the rule sets, although the voting scheme still remains fixed.
In the same time, the proposed method provides us with a framework for tuning the
weights and, in this way, learning adaptively the voting formula (cf. [9, 14, 17]).

Still, the scheme based only on generalised linear combinations and concept map-
pings is not adjustable enough. The reader may check that composition of functions
(23) for elements of RULS and WDEC with (24) results in the collapsed single-layer
structure corresponding to the most basic weighted voting among decision rules. This
is exactly what happens with classical feedforward neural network models with no non-
linear activation functions translating the signals within particular neurons. Therefore,
we should consider such functions as well.

Definition 5. Neural concept scheme is a quadruple (C,MAP,LIN ,ACT ), where
the first three entities are provided by Definitions 1, 2, and

ACT = {acti : Ci → Ci : i = 2, . . . , n + 1} (25)



is the set of activation functions, which can be used to relate the inputs to the outputs
within each i-th layer of a network.

It is reasonable to assume some properties ofACT , which would work for the proposed
generalised scheme analogously to the classical case. Given a compound concept con-
sisting of some interacting parts, we would like, for instance, to guarantee that a relative
importance of those parts remains roughly unchanged. Such a requirement, correspond-
ing to monotonicity and continuity of real functions, is well expressible for weighted
compound concepts introduced in Definition 3. Given a concept ci ∈ Ci represented
as the weighted collection of sub-concepts, we claim that its more important (better
weighted) sub-concepts should keep more influence on the concept acti(ci) ∈ Ci than
the others.

In section 7 we introduced sigmoidal activation function taken from [22, 23], work-
ing on probability vectors comparable to the structure of WDEC in Example 1. That
function, originating from the studies on monotonic decision measures in [18], can be
actually generalised onto any space of compound concepts weighted with real values:

Definition 6. By α-sigmoidal activation function for weighted compound concept space
C with the real concept parameters, we mean function actαC : C → C parameterised
by α > 0 which modifies these parameters in the following way:

actαC(c) =

{(
s,

eα·vs

∑
(t,vt)∈c eα·vt

)
: (t, vt) ∈ c

}
(26)

By composition of lini and mapi, which specify the concepts c
j(i+1)
i ∈ Ci+1 as in-

puts to the nodes in the (i + 1)-th layer, with functions actαi+1 modifying the concepts
within the entire nodes, we obtain a classification model with a satisfactory expres-
sive and adaptive power. If we apply this kind of function to the rule sets, we modify
the rules’ applicability degrees by their internal comparison. Such performance can-
not be obtained using the classical neural networks with the nodes assigned to every
single rule. Appropriate tuning of α > 0 results in activation/deactivation of the rules
with a relative higher/lower applicability. Similar characteristics can be observed within
WDEC, where the decision beliefs compete with each other in the voting process (cf.
[18]).

The presented framework also allows for modelling of other interesting behaviours.
For instance, the decision rules which inhibit influence of other rules (so called excep-
tions) can be easily achieved by negative weights and proper activation functions, what
would be hard to emulate by plain, negation-free conjunctive decision rules. Further
research is needed to compare the capabilities of the proposed construction with other
hierarchical approaches [9, 12, 13, 24].

8.2 Learning in classifier networks

A cautious reader have probably already noticed the arising question about the proper
choice of connection weights in the network. The weights are ultimately the component
that decides about the performance of entire scheme. As we will try to advocate, it is



– at least to some extent – possible to learn them in a manner similar to the case of
standard neural networks. One such learning procedure we have already outlined in
case of Normalising Neural Networks (subsection 7.4).

Backpropagation, the way we want to use it here, is a method for reducing the global
error of a network by performing local changes in weights’ values. The key issue is to
have a method for dispatching the value of the network’s global error functional among
the nodes (cf. [5]). This method, when shaped in the form of an algorithm, should pro-
vide the direction of the weight update vector, which is then applied according to the
learning coefficient. For the standard neural network model (cf. [4]) this algorithm se-
lects the direction of weight update using the gradient of error functional and the current
input. Obviously, numerous versions and modifications of gradient-based algorithm ex-
ist.

In the more complicated models which we are dealing with, the idea of backprop-
agation transfers into the demand for a general method of establishing weight updates.
This method should comply to the general principles postulated for the rough-neural
models (cf. [11, 27]). Namely, the algorithm for the weight updates should provide a
certain form of mutual monotonicity i.e. small and local changes in weights should not
rapidly divert the behaviour of the whole scheme and, at the same time, a small overall
network error should result in merely cosmetic changes in the weight vectors. These
principles are well exemplified by the procedure used in case of NNNs. The need of in-
troducing automatic backpropagation-like algorithms to rough-neural computing were
addressed recently in [9]. It can be referred to some already specified solutions like, e.g.,
the one proposed for rough-fuzzy neural networks in [10]. Still, general framework for
RNC is missing, where a special attention must be paid to the issue of interpreting and
calculating partial error derivatives with respect to the complex structures’ parameters.

We do not claim to have discovered the general principle for constructing back-
propagation-like algorithms for the concept (granule) networks. Still, in [22, 23] we
have been able to construct generalisation of gradient-based method for the homoge-
neous neural concept schemes based on the space WDEC. The step to partly homo-
geneous schemes is natural for the class of weighted compound concepts, which can
be processed using the same type of activation function. For instance, in case of the
scheme illustrated by Figure 8, the conservative choice of mappings, which turn to be
differentiable and regular, permits direct translation from the previous case. Hence, by
small adjustment of the algorithm developed previously, we get a recipé for learning
the weight vectors.

An example of two-dimensional weights (w, θ) ∈ Wi proposed in Section 5 is much
harder to translate into backpropagation language. One of the most important features
of classical backpropagation algorithm is that we can achieve the local minimum of an
error function (on a set of examples) by local, easy to compute, change of the weight
value. It does not remain easy for two real-valued parameters instead of one. More-
over, parameter θ is a rule threshold (fuzzified by a kind of sigmoidal characteristics to
achieve differentiable model) and, therefore, by adjusting its value we are switching on
and off (almost, up to the proposed sigmoidal function) entire rules, causing dramatic
error changes. This is an illustration of the problems arising when we are dealing with



more complicated parameter spaces. In many cases we have to use dedicated, time-
consuming local optimization algorithms.

Yet another issue is concerned with the second ,,tooth” of backpropagation: trans-
mitting the error value backward throughout the network. The question is how to modify
the error value due to connection weight, assuming that the weight is generalised (e.g.
the vector as above). The error value should be translated into value compatible with the
previous layer of classifiers, and should be useful for an algorithm of parameters mod-
ification. It means that information about error transmitted to the previous layer can be
not only a real-valued signal, but e.g. a complete description of each rule’s positive or
negative contribution to the classifier performance in the next layer.

9 Conclusions

We have discussed construction of hierarchical concept (classifier) schemes aiming at
layered learning of mappings between the inputs and desired outputs of classifiers. We
proposed a generalised structure of feedforward neural-like network approximating the
intermediate concepts in a way similar to traditional neurocomputing approaches. We
provided the examples of compound concepts corresponding to the Bayesian and rule
based classifiers, and showed some intuition concerning their processing through the
network.

Although we have some experience with neural networks transmitting non-trivial
concepts [22, 23], this is definitely the very beginning of more general theoretical stud-
ies. The most emerging issue is the extension of proposed framework onto more ad-
vanced structures than the introduced weighted compound concepts, without loosing a
general interpretation of monotonic activation functions, as well as relaxation of quite
limiting mathematical requirements corresponding to the general idea of learning based
on the error backpropagation. We are going to challenge these problems by develop-
ing theoretical and practical foundations, as well as by referring to other approaches,
especially those related to rough-neural computing [9, 11, 12].

Acknowledgements
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(eds.), Proc. of ISMIS’2003. LNAI 2871, Springer (2002) pp. 408–416.

24. Stone, P.: Layered Learning in Multiagent Systems: A Winning Approach to Robotic Soccer.
MIT Press, Cambridge MA (2000).



25. UCI Repository of ML databases, University of California, Irvine, (1998)
http://www.ics.uci.edu/∼mlearn/MLRepository.html.
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