
Parallel Island Model for Attribute Reduction

Mohammad M. Rahman1, Dominik Ślȩzak1,2, and Jakub Wróblewski2

1 Department of Computer Science, University of Regina
Regina, SK, S4S 0A2 Canada

{rahman5m,slezak}@cs.uregina.ca
2 Polish-Japanese Institute of Information Technology

Koszykowa 86, 02-008 Warsaw, Poland
{slezak,jakubw}@pjwstk.edu.pl

Abstract. We develop a framework for parallel computation of the op-
timal rough set decision reducts from data. We adapt the island model
for evolutionary computing. The idea is to optimize reducts within sep-
arate populations (islands) and enable the best reducts-chromosomes to
migrate among islands. Experiments show that the proposed method
speeds up calculations and also provides often better quality of results,
comparing to genetic algorithms applied so far to the attribute reduction.

1 Introduction

Feature Selection in KDD and Pattern Recognition is an essential task [6]. Rough
set-based methods can measure multi-attribute relationships. Hence, they are
used to identify (ir)relevant features. Selection of features that (approximately)
preserve so called indiscernibility of objects leads to classifiers based on reducts
– most informative, irreducible subsets of attributes [11].

There can be many reducts in a data set. Finding short reducts is a major
task while developing a good rough set-based classifier. It enables to overcome
weakness of other approaches that ignore the effects of the feature subsets on per-
formance of the induction algorithms. The problem of finding minimal reducts
is NP-hard [11]. Some heuristic approaches were developed. An order-based ge-
netic algorithm (o-GA) for finding minimal reducts [14] is proposed as a hybrid
process. Genetic algorithm (GA) greedily selects features and rough set methods
measure a degree of their relevancy within a given subset.

o-GA for finding short reducts works on a single processor. Its weakness is
that it takes more time to find out sufficiently good reducts in a large search
space. We use distributed evolutionary computing [2] to exploit availability of
computer networks and massive power of parallel computing. In distributed envi-
ronment, the total population is divided into sub-populations evolving in parallel,
which increases performance of calculations. But it declines the overall average
quality of minimal reducts and sometimes it can not avoid local optima. It turns
out that the proposed island model implementation in a distributed environ-
ment, which exploit migration technique to exchange genetic material between
populations, increases quality along with performance.

The paper is organized as follows: Section 2 introduces basics of the rough set
theory. Section 3 introduces order-based genetic algorithm for reduct generation.
Section 4 gives an idea of the island model of distributed computing. Section 5
summarizes results comparing to the single processor-based rough-genetic ap-
proaches. Section 6 gives conclusions and discusses future work.

2 Rough Sets

Rough sets were introduced by ZdzisÃlaw Pawlak in 1982. It has become a popular
theory in the field of data mining, derived from fundamental research on logical
properties of information systems – pairs A = (U,A), where U is a non-empty
finite set called the universe and A is a non-empty finite set of attributes, i.e.
a : U → Va for a ∈ A, where Va is called the value set of a.

With any B ⊆ A, there is associated the equivalence relation IND (B) =
{(x, x′) ∈ U2 | ∀a ∈ B, a (x) = a (x′)}, called the B-indiscernibility relation. If
(x, x′) ∈ IND (B) then objects x and x’ are indiscernible from each other by
attributes from B. Equivalence classes of IND(B) are denoted by [x]B .

A decision system takes the form of A = (U,A ∪ {d}) where d is the decision
attribute. Elements of U are called objects. For every value vk ∈ Vd we define
the k-th decision class Xk = {u ∈ U : d(u) = vk}. For every Xk ⊆ U and
attribute subset B ⊆ A, we can approximate Xk by the B-lower approximation
BXk and B-upper approximation BXk using knowledge of B. BXk is the set of
objects that are surely in Xk, defined as BXk = {x|[x]B ⊆ Xk}. BXk is the set
of objects that are possibly in Xk, defined as BXk = {x|[x]B ∩Xk 6= ∅}.

The positive region of d with respect to condition attributes B is denoted
by POSB (d) =

⋃
BXk. It is a set of objects of U that can be classified with

certainty employing attributes of B. A subset R ⊆ B is said to be a reduct of
B if POSR (d) = POSB (d) and there is no R′ R such that POSR′ (d) =
POSR (d). In other words, a reduct is the irreducible set of attributes preserving
the positive region. There can be many such reducts in a decision system.

3 Order-Based Genetic Algorithm

Genetic algorithm (GA) is an adaptive heuristic search method for solving op-
timization problems. It was introduced by John Holland in 1970s. As an al-
ternative technique, it outperforms most of traditional methods. Finding the
minimal reducts is a NP-hard problem [11]. Hence, GA is a good candidate as a
methodology for finding minimal reducts.

In classical GA, individuals are encoded as binary strings of the attributes
(e.g. 0100110100 ≡ {a2, a5, a6, a8}). Each individual represents a set of attributes
generated by mutation, crossover and selection procedures using some fitness
criteria. Individuals with maximal fitness are highly probable to be reducts but
there is no full guarantee. A hybrid approach using order-based encoding of the
attributes is proposed in [14] where each individual will produce a reduct.

Algorithm 1 Reduct Calculation from a chromosome
Input: chromosome τ ≡ (a1, a2, a3, ..., an)
Output: reduct

1: R = {a1, ..., an}
2: for i = 0 to n do
3: if POSR−{an−i}(d) = POSR(d) then
4: R = R− {an−i}
5: end if
6: end for
7: return R

Here, an individual is an ordered list of features (a1, a2, a3, ..., an). Order is a per-
mutation of the features generated by GA operators. A deterministic algorithm
is used to calculate the reduct (denoted by R) from an individual. Crossover,
mutation and selection are applied to generate the next generation population.
For selection method, length (denoted by LR) of R is used as fitness. Determin-
istic procedure keeps removing each feature from the list’s end as long as the
remaining features maintain the same positive region.

4 Parallel GA and Island Model

Parallel GA was first attempted by Grefenstette in [5]. Parallelism refers to
many processors, with distributed operational load. Each GA is a good candidate
for parallelization. Processor may independently work with different parts of a
search space and evolve new generations in parallel. This helps to find out the
optimum solution for the complex problems by searching massive populations
and increases quality of the solutions by overcoming premature convergence.
Many complex problems like: set partitioning problem [8], RNA folding pathways
[10], multiprocessor scheduling problem [2] are treated with Parallel GA.

The above traditional parallel GA is called a sequential GA. Another type
is called the Island Model (IM) [12], where processors are globally controlled
by message passing within master-slave architecture. Master processor sends
”START” signal to the slave processors to start generations and continue sending
”MIGRATION” message to partially exchange the best chromosomes between
the processors. Time between two consecutive ”MIGRATION” signals is called
the migration step; percentage of the best chromosomes is called migration per-
centage. The worst chromosomes are replaced by the received ones. Migrations
should occur after a time period long enough for allowing development of good
characteristics in each sub-population.

5 Experimental Results

We calculate reducts within Cygwin-based (a Linux-like environment in Win-
dows) parallel processing framework, using modified libGA [3]. We tested:

Algorithm 2 Island Model (master pc)
Input: number of processors N
Output: reducts

1: for i = 0 to N do
2: SendMessage(i,START)
3: end for
4: while short enough reducts not found do
5: for i = 0 to N do
6: SendMessage(i,NEXTGENERATION)
7: end for
8: CollectReducts()
9: if current generation such that migration time reached then

10: for i = 0 to N do
11: SendMessage(i,MIGRATION)
12: end for
13: end if
14: end while

1. Order-based serial GA (OGA) using a single processor
2. Parallel island model (PIM) over 10 computers

Each computer was Pentium 997 MHz, 384 Mb of RAM, using Windows 2000.
We considered four UCI data sets. Partially matched crossover (PMX) with the
rate of 70% and swap mutation, rate 1%, were used. We took a pool size 300 for
OGA. We split it among 10 processors (30 chromosomes for each) for PIM.

PIM was done by two methods: with and without migration. In PIM with
migration (further denoted by PIM-Mg), two new parameters are added: ms
(migration step) is the number of generations between migrations; mr (migration
rate) is the percentage of individuals migrating to the neighbor processors. In
our experiment, we used ms = 5 and mr = 25%.

For OGA, evolution was continued until the chance of getting new reducts was
too low. Then we tried to find the same number of minimal reducts (only reducts
of minimal length L and L + 1) by PIM methods. The process was repeated 20
times, given random initial pool. Average results are presented below.

Table 1. Average time taken in three different methods for four data sets, with different
number of objects (m) and attributes (n). The top plus signs in the three results for
PIM indicate that the minimal reducts could not be found within 500 generations.

m n No. of Min. Reducts OGA PIM PIM-Mg

70 18 142 49.75 53.45+ 12.06

103 19 166 77.6 19.40 8.70

307 36 529 4980 1803+ 1289

592 19 1434 11219 2460+ 1778

Fig. 1. The minimal reduct generation process for four different data sets, displayed in
terms of ”minimal reducts-time” graphs. The dotted lines in data sets 3 and 4 indicate
that after some generations PIM without migration fell in local-optima. We considered
the maximum time as the time needed for finding all the minimal reducts.

6 Conclusions

Results show that PIM takes less time in the initial stage because of not spending
any time for migration and total population are distributed in 10 processors. But
usually it got trapped in local optima because of its small population size. On
the other hand, PIM-Mg outperforms all other methods in time and quality.
Moreover, performance increased dramatically for larger data sets.

In conclusion, for feature selection/reduction problems with large search
space, we can distribute the total population into islands (processors) to gain
performance and apply migration to preserve quality.

In future, we will apply the island model strategy for finding high quality
approximate and dynamic reducts. Especially the idea of dynamic reducts –
subsets of features remaining reducts for different sub-samples of data [1] – fits
the island model perfectly. Assigning different sub-samples to different islands,
migrations may provide high stability of best found reducts. Also, we plan to
check another possibilities of crossover operators, e.g. OX (order crossover).

Acknowledgments: The research reported in this article was supported in part
by research grants from Natural Sciences and Engineering Research Council of
Canada awarded to the second author, as well as from Research Centre of PJIIT
awarded to the third author.

References

1. Bazan, J., Skowron, A., Synak, P.: Dynamic reducts as a tool for extracting laws
from decision tables. In: Proc the Symp. on Methodologies for Intelligent Systems,
Charlotte, NC (1994) 16–19

2. Corcoran, A.L., Wainwright, R.L.: A parallel island modal genetic algorithm for
the multiprocessor scheduling problem. In: Proc ACM/SIGAPP Symposium on
Applied Computing (1994) 483–487

3. Corcoran, A.L., Wainwright, R.L.: LibGA: A user-friendly workbench for order-
based genetic algorithm research. In: Proc ACM/SIGAPP Symposium on Applied
Computing (1993) 111–118

4. Goldberg, D.E.: Genetic algorithms in search, optimisation and machine learning.
Addison-Wesley, Reading MA (1989)

5. Grefenstette, J.J.: Parallel adaptive algorithms for function optimization. Technical
Report CS-81-19, Computer Science Department, Vanderbilt University, Nashville,
TN (1981)

6. Kittler, J.: Feature selection and extraction. In: Young and Fu (Eds.), Handbook
of pattern recognition and image processing. Academic Press, New York (1986)
203–217

7. Knight, L., Wainwright, R.: HYPERGEN – A distributed genetic algorithm on
a hypercube. In: Proc the Scalable High Performance Computing Conference.
Williamsburg, Virginia (1992)

8. Levine, D.: A parallel genetic algorithm for the set partitioning problem. PhD
thesis, Illinois Institute of Technology, Department of Computer Science (1994)

9. Pawlak, Z.: Rough sets – Theoretical aspects of reasoning about data. Kluwer
Academic Publishers (1991)

10. Shapiro, B.A., Wu, J.C., Bengali, D., and Potts, M.J.: The massively parallel ge-
netic algorithm for RNA folding: MIMD implementation and population variation.
Bioinformatics 17 (2001) 137–148

11. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information
systems. In: Slowiński (Ed.): Intelligent Decision Support. Handbook of Appli-
cations and Advances of the Rough Sets Theory. Kluwer Academic Publishers,
Dordrecht (1992) 331–362

12. Whitley, D.: A genetic algorithm tutorial. Technical report, Colorado State Uni-
versity (1993)

13. Wróblewski, J.: A parallel algorithm for knowledge discovery system, in: Proc
PARELEC’98, Bialystok, Poland (1998) 228–230

14. Wróblewski, J.: Finding minimal reducts using genetic algorithms. In: Proc the
Second Annual Joint Conference on Information Sciences. September 28 - October
1, Wrightsville Beach, NC (1995) 186–189

15. Wróblewski, J.: Theoretical foundations of order-based genetic algorithms. Funda-
menta Informaticae 28(3-4) (1996) 423–430

