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Abstract

We introduce a novel neural network architecture, referred to as the normalizing
neural network (NNN), where the propagated signals take the form of finite prob-
ability distributions. Appropriately tuned NNN can be applied as the compound
voting measure while classifying new cases on the basis of approximate decision
reducts extracted from the training data. We provide a general scheme of such a
classification process, as well as some theoretical issues concerning the NNN con-
struction. We compare the performance of the appropriately learnt NNNs with the
fixed voting measures, for some benchmark data sets.

1 Introduction

Within the rough set theory [8], one assumes that a universe of known objects
is the only source of knowledge, which can be applied to construct models of
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reasoning about new cases. Reasoning can be stated, e.g., as a classification
problem, concerning prediction of a decision attribute under information pro-
vided for conditional attributes. Rough set classification systems are usually
based on the notion of a reduct [8] — a minimal subset of attributes which is
sufficient to discern between objects with different decision values. A set of
short reducts (or approximate reducts, as in [I5]) can be efficiently calculated
[2] and used to generate a set of classifying components (sets of rules).

Having multiple components of decision model (multiple classifiers) poses
a challenge when it comes to choosing the right ones. It is not uncommon that
the single choice is not satisfactory and we should in fact employ a procedure
that makes it possible to use several components at the time. To do that
we need a mechanism for final decision making on the basis of sometimes
conflicting sub-classifiers. A common approach is to set up a voting measure,
which combines the outcomes of all classifiers applicable to each given new
object according to a fixed mathematical formula. Further, one can design a
kind of multi-agent framework for selecting optimal subset (ensemble [5]) of
classifiers.

We propose to base not only on the selection of agents, but also on com-
bining classification results (voting) using adaptive neural-based structure.
It enables to derive the way of optimal synthesis of classifiers directly from
the training data, within the framework of learning artificial neural networks
(ANNs). The ANN-based approaches have been already applied to adaptive
voting between rough set based decision rules in [TGT7/I8]. In this paper we
apply ANNs at the level of synthesis of the whole rough set based classifiers
— the sets of decision rules (generated by reducts) instead of single rules. For
this purpose, we need to reformulate the standard ANN architecture to be
able to handle with the whole vectors of values labelling decision classes.

In purpose of emphasizing the main difference between the standard ANN
and the proposed neural network architecture, we refer to that latter one as to
the normalizing neural network (NNN). From the sub-classifier outputs (dis-
tributions) NNN composes the final decision probabilistic distribution for the
entire classification system. The NNN’s learning scheme is inspired by classical
feedforward neural networks with the inputs and outputs being approximate
decision distributions.

2 Probabilities in data based logic

In the rough set theory [8] the sample of data takes the form of an information
system A = (U, A), where each attribute a € A is a function a : U — V,, into
the set of all possible values on a. Given arbitrary a € A and v, € V,, we say
that object u € U supports descriptor a = v, iff a(u) = v,. We denote by
la = vy||a C U the set of all objects, which support a = v,.

One can regard descriptors as boolean unary predicates and use them to
construct logical formulas as their boolean combinations. It leads to the data
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based logics denoted further by 74. In many applications, additional tech-
niques, such as discretization or grouping of values, are used for the purpose
of obtaining more relevant descriptors. The sets ||a|la € U of objects sup-
porting boolean formulas « € 74 are obtained from components ||a = v,|a
by using standard semantics of logical operators. The aim of the rough set
theory is to approzimate concepts X C U by means of subsets ||c||5 [SI11].

The classification tasks usually concern a distinguished decision to be pre-
dicted under information provided over the rest of attributes. For this pur-
pose, we represent data as decision systems A = (U, AU {d}), d ¢ A. Let
Va=(v1,...,un), N =1|Vy|. Foreach i =1,..., N, we define the i-th decision
class X; CUby X; = {u € U : d(u) = v;}. One can extend the logic built over
the attribute descriptors by analyzing probabilistic properties of the boolean
formulas. The probability

[[lev]]]
(1) PA(CY) =
U
reflects the degree of truth of formula o € 74 within A. The probability
Xi
(2) Pa(d = vi/a) = X0 ol
lleellal

reflects the chance that a randomly chosen object supporting « will drop into
the i-th decision class. Quantities () and (£)) can be regarded as, respectively,
the strength and precision of the decision rule oo = d = v;.

For any B C A and u € U, we consider the B-information vector B(u) =
(bi(u),...,bp|(u)), where coordinates correspond to the values of attributes
belonging to B. The set of all vectors of values on B, which occur in A,
takes the form of V¥ = {B(u) : u € U}. We can rewrite each wp € V¥ as
wp = (v1,...,vp) and condition B = wp as by = vi A...Abp = vp. Thisis
a simplified notation for the conjunctions of descriptors in 74. In such a case,
probabilities (Il) and (2 take, respectively, the form of

{u € U: B(u) =wg}|

(3) Pu(B = wp) = o
and
(4) Pa(d = v)B = wy) = L€ Xi: Blu) = wp}

{u € U : B(u) = wp}|
for o € 74 equivalent to by = vi A ... Abp = v;p|.

3 Probabilistic and rough membership distributions

Given A = (U, AU {d}) and B C A, we can span over the set V¥ the data
driven probabilistic distribution, where each vector wg € V} is assigned with
probability (B)). Similarly, each wp € V¥ can be labeled with the conditional
probabilistic distribution

(5) Py(d/B = wp) = (Pa(d = vi/B = ws), ..., Pa(d = vy /B = wp))
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where particular values v; € V; are assigned with probabilities (#l). These
probabilities enable to look at subsets B C A as the generators of the bunches
of probabilistic decision rules, capable to be used while the new case classifi-
cation in various ways. We can talk about a kind of probabilistic multi-rule
B = d written as

(6) B=d = \/ [B=wp= Pi(d/B=uwp)]
wp€eVY

Given a new object with the vector of values w4 on A, we can project it onto
B and check whether the obtained vector w¥® occurs in A, i.e. if w}® € VY.
If not, then it means that B is not applicable. If yes, then we can attach to
the considered object decision distribution Py(d/B = w}’).

Within the theory of rough sets, probabilities can be also considered at the
level of objects, instead of vectors of values. In [9] it was proposed to use the
rough membership function, defined for each given A = (U, A), B C A and

X C U, as the function p£ : U — [0, 1] with values

B [u]p N X]|
(7) Hx (u) |[U]B|
where [u]p = {v' € U : B(u) = B(v')} is the B-indiscernibility class of u € U.
Given A = (U, AU {d}), we are interested in approximating decision classes
X; C U, fori=1,...,N. Then, the values of the form p% (u) are equal to
@) for v; corresponding to X; and wp corresponding to B(u). Going further,
we can define the rough membership distributions

(8) Hayp(u) = (ux, (W), ..., px, (u))
which correspond to conditional probabilistic distributions over d, given con-
dition B = B(u), and enable to rewrite (f) as

(9) B=d = \/ [B=B@u)= T,s)]

uclU
Such distributions are regarded as expressing the most detailed information
provided by B about d. For description of methods using this information, we
refer to further sections and [I314].

4 Probabilistic decision functions

Vectors ﬁd/ p(u) and Py(d/B = wg) provide just an exemplary source of
probabilistic decision distributions. One can derive them also by basing on
probabilities Py(d = v;/a), corresponding to the rules « = d = v;, for i =
1,...,N and any o € 74. Further, one can derive decision distributions from
the rules o = 3, for any formulas o, 8 € T4uqq), Within the unified language
Taugqy based both on decision and conditional attributes. It is enough to
localize the decision based descriptors d = v; within « and/or 3 and calculate
the rule’s precision under the foregoing substitutions ¢ = 1,..., N. Then, it
remains to simply normalize the resulting vector.
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In general, any classifier may be used to label new objects with the vec-
tors of weights corresponding to particular decision classes. Such vectors can
be regarded as object-oriented distributions and further analyzed in purpose
of choosing the most accurate decision. In [I2] the family of probabilistic
functions, helpful in the processing of decision probabilistic distributions, was
considered. Given N € N decision classes, the set of all probabilistic dis-
tributions, which possibly label the considered cases, can be defined as the
(N — 1)-dimensional simplex

(10) An_1={s=(s[1],...,s[N]) : min; s[i] > 0A Y, s[i] = 1}

For instance, each distribution of the form (B) is an element of Ayx_;. As
mentioned before, such distributions seem to express the most accurate knowl-
edge about dependencies of the decision d on the selected attributes B C A.
Thus, it should be possible to model various reasoning strategies as functions
¢ : Ay_1 = Apy_; acting over ﬁd/ p(u) by “forgetting” a part of frequency
information, which is redundant with respect to a given approach.

In [I2] the following postulates for probabilistic decision functions ¢ :
Ay_1 — Apn_1 were proposed. They can be referred to as, respectively,
the logical and monotonic consistency postulates:

(A1) Vi; [(sli] =0 =¢(s)[i] =0) A (s[i] < s[j] = ¢(s)[t] < ¢(s)[5]) ]
Due to the first part of ([Il), a positive weight cannot be attached to a non-
supported event. Further, the relative chances provided by the reasoning
strategy cannot contradict those derived directly from an information source.
For instance, let us consider function ¢, : Ay_1 — Ay_1, where z > 0 is

a parameter and for each s € Ay_; and i =1,..., N we have
: (s[e])®
(12) ¢a(s)[t] = .
> oim (sa)®

Function ¢, satisfies ([I)) for any = > 0. Vectors 72, 5(u) and ¢, (T 4/5(w))
differ to each other due to the choice of z. If z is close to 0, then the positive
coordinates of ¢, (ﬁd/B (v)) become more similar to each other, while for
large = the differences increase. We discuss the applications of such functions
in [15)].

5 Probabilistic voting methods

Given decision system A = (U, AU {d}), we can construct the collections of
decision rules o = d = vj(,) for various a € 74 and v,y € Vy. Usually,
the considered formulas « take the form of conditions B = wp, for possibly
frequent vectors wp € V¥ spanned over possibly small subsets B C A. The
most valuable rules are these with both the strength and precision high enough.

Once we have the collection of decision rules, there is a big chance that for
a given new object a conflict will occur. New objects, with new combinations
of the attribute values, may fit the left sides of the rules pointing at different
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decision classes.To deal with this issue one can, e.g. vote between the outcomes
of the rules applicable to each particular new object, using the rules’ strength
and/or precision factors (see [I] for details).

Formulas of the data based logic are usually optimized by means of tar-
geting particular decision classes. However, o € 74 can be also applied to
deriving the whole probabilistic decision distributions, as described before,
i.e. leading to probabilistic rules of the form « = Py(d/a). An advantage
of such an approach can be seen for highly inconsistent data, where there are
no fine approximations of decision classes. For instance, in medical applica-
tions, we are often interested in very rare decision classes, not targeted by any
reasonably precise decision rules. Then, only the whole probabilistic vectors
enable us to analyze the chances for observing such values for new cases.

The easiest way of extracting decision distributions from data is to gener-
ate rough membership or probabilistic distributions conditioned by specified
subsets of attributes B C A (cf. Section B). Let us assume that we have
a family of attribute subsets, denoted by B C P(A). Given a new object
with the vector of values w4 on A, we can consider the vector of weights
Wa(d/B =ws) € RY with coordinates calculated, e.g., as follows:

(13) Wild=v;/B=wy) = Z Py(d =v;/B = wY’)
BeB:Py(w}P)>0

Then it remains to choose the decision class with the highest weight. Obvi-
ously, one can apply various algorithms for calculating Wj. For instance, one
can multiply probabilities Ps(d = v;/B = w%’) by the rule strength factors
Py(wg). Further, condition Py(w%’) > 0 can be changed to Py(w¥’) > 7,
for some 7 € [0,1). Finally, probabilistic distributions P (d/B = w}’) can be

modified by using appropriately chosen probabilistic functions ¢ : Ay_; —
An_1. Using the modified probabilities ¢ (PA(d/B - ij)) [i] instead of

Py(d = v;/B = wY’) in ([3) may change a lot in the performance of the
classifier.

6 Multi-reduct approaches

In many applications it is convenient to create independent classification al-
gorithms. Even for a single data table, the creation of various classification
systems may improve generality of the model. One can try to utilize advan-
tages of different methods by creating a heterogeneous set of classifiers (rule
sets, decision trees, k-NN classifiers etc.). One can also base on syntactically
comparable models, like in Section bl where we considered classification mod-
els based, for a given decision system A = (U, AU {d}), on various subsets of
attributes, forming the family B C P(A).

A question is how to obtain an appropriate family of attribute subsets from
data. As stated before, the most valuable rules are these with sufficiently high
strength and precision. Such rules are more likely to be generated by subsets
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B C A with possibly small number of B-indiscernibility classes, corresponding
to the elements of VY. Precision of probabilistic rules of the form B = wp =
Py(d/B = wp) can be calculated in many ways, by considering various criteria
of measuring information stored within distributions Py(d/B = wp). Provided
with such tools, one is interested in keeping by B the probabilistic decision
information at (almost) the same level as the whole A.

Keeping the decision information is concerned with a probabilistic modi-
fication of the fundamental rough set theory notion of a decision reduct. We
say that B C A is a p-decision reduct for A = (U, A U {d}), iff it satisfies

(14) Vuer [7d/3 (u) = 7d/A(U)]

and none of its proper subsets does. The above condition can be rewritten as:

(15) Vusevy | Pald/B =w}’) = Pa(d/A = wy)]

which states that d is independent from A\ B conditioned by B, in terms of
probabilities derived from the data.

The problems of searching for optimal p-decision reducts are NP-hard [14]
and usually there exist a number of attribute subsets being (sub)optimal so-
lutions. One can define the considered family B C P(A) as gathering such
reduct solutions, found by application of various rough set based heuristics
(cf. [2]). Moreover, one can consider shorter (more simple) approzimate p-
decision reducts [T2JT3JT4], where probabilistic distributions may slightly (up
to the choice of the approximation thresholds) vary even on the training data.

The usage of, e.g., formula ([3) as synthesizing the u-decision reduct re-
lated distributions may lead to reasonably good classification results. Still,
it can be significantly enhanced using adaptive approaches. Examples of the
adaptive information synthesis methods are described in [I5J20)21]: They may
involve the problem of extracting optimal subfamilies of B and/or the problem
of learning optimal voting measures leading to the highest proper classification
ratio over the training data.

In that latter case, we can parameterize the voting formulas similar to ([C3))
by the choice of, e.g., probabilistic decision functions or minimal rule strength
thresholds, as described at the end of Section 5. In purpose of handling a
larger space of measures, we can try to optimize their mathematical structure
by means of, e.g., artificial neural networks described in the following sections.

7 Rule based voting with neural networks

Recently, an interest in combining the methods of rough sets and neurocom-
puting has been growing (cf. [7]). The usage of artificial neural networks for
synthesis of previously derived rough set classifiers is just a particular aspect of
this tendency. We want to make use of the abilities of multilayer feedforward
neural network paradigm. This method is in principle based on minimizing
the global error of the neural network by performing weight adjustment deter-
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mined by the gradient of error functional [4]. Therefore, in order to construct
our version of neural network and corresponding learning procedure we pro-
pose the network architecture including transition functions for neurons, error
measure determining the distance between desired and actual network output,
and weight update formula for each neuron.

Our approach to combining neural networks with rough set based meth-
ods fits into the landscape of previous studies on such hybrid systems (see
[TOJT6IT7]). In particular, there were attempts to use neural network abilities
to fine tune rule-based classifiers ([I6/I8]). In these approaches collections of
rules constituted a source of input patterns for neural network. It is assumed
that the rule base is somehow optimized before the network construction, in
order to eliminate redundancies coming from the fact that the parts of rule
base are constructed independently.

With each decision rule a = d = v;(,) there is associated an input neuron
a,. If a given object u € U supports « (i.e. u is recognized by the a-based
decision rule), then it is activated with the real value specified in terms of the
rule’s strength Py () and precision Py(d = vjs)/c). Otherwise, the o-related
neuron is not activated (i.e. its output is 0).

The neural network is then constructed and trained to approximate the
unknown mapping from the rule-based input neuron values to the original
decision. The network itself is supposed to be devised in quite straightforward
way. It is a single or multilayer feedforward network with sigmoidal transition
functions in neurons, fully connected and sporting one output neuron for each
decision value. The final decision in the simplest case is obtained by taking
the one corresponding to the most excited neuron in output layer. To train
this network simple backpropagation scheme is used ([3]).

The network construction and training methods sketched above address
the situation in which we are with rules and want a single decision prediction
in the end. Since we are interested in dealing with possibly inconsistent data
sets, it would be nice to have similar neural-network-like mechanism capable
of expressing not only decision values but the decision distributions (as in
Section H). One may envision this neural network, henceforth called Normal-
izing Neural Network (NNN), as a compound, multi stage voting mechanisms
for solving inconsistencies that may emerge when taking into account several
sources of classification distributions (as in Section ).

8 Reduct based voting with NNNs

In Section B we noted that the adaptive approaches to the synthesis of local
classifiers are potentially better than those based on the fixed voting formu-
las. We presented two examples of adaptive methods: searching for the best
subfamily of the voting classifiers, and — in Section [ — learning the voting
scheme by means of the neural networks.

The question is whether one can use the neural network based approach for
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probabilistic decision rules of the form o = P,(d/«) instead of the standard
decision rules o = d = vy(q), as presented so far. Further question is whether
we can consider neural networks with inputs understood as collections of rules,
e.g. generated by subsets of attributes, or — in the most general case — inputs
acquiring decision probabilistic distributions obtained for a new objects from
particular classifiers.

In Section Bl we claimed that any classifier may be used to produce the
decision distribution for a considered object. If we attach such a classifier to
each neuron in the input layer, we obtain the natural scheme of the network
combining probabilistic distributions instead of real values.

The difference between the proposed model and the standard artificial
network is that we combine the probability vectors and use the probabilistic
decision functions ¢ : Ay_1 — Apn_1 as activation functions in the neurons.

Let us denote by d = (d[1],...,d[N]) — the probabilistic vector, which is
the output of the network for a given object and by ¢ = (¢[1],...,¢[N]) — the
actual rough membership distribution for given objects. The error function
can be expressed by:

(16) E=7 Z(d[i] — t[i])*

The networks we are constructing are simple and always fully connected
i.e. the output of a neuron goes to all neurons in next layer. To find weights
we use gradient descent method i.e. we update weight vector according to the
formula:

(17) Wew = Wora + MP(Woa) = Woia + N(—VE(W s14))

where 7 € [0, 1] is a learning ratio and p(W ,4) denotes the direction in which
we change the vector of weights W.q. In our approach, as in classical gradient
descent method, the p(W,q) is the negative gradient of error () treated as
function of weight vector.

The key issue in order to assure applicability of proposed neural network is
to create an analogon of backpropagation procedure for NNNs. In a nutshell,
in the classical neural network there exists effective method for calculating
error (gradient) ratios used in weight updates. These values for output layer
are easy to derive and for hidden layer they are calculated on the basis of linear
combination of error components propagated from the next layer (whence
the name backpropagation). Luckily enough it is possible to produce similar
procedure in case of NNNs. Unfortunately, the actual proof of this fact exceeds
the capacity of this paper as it requires advanced apparatus from the area of
multi-dimensional real calculus.
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9 Experimental results

In this section we compare the performance of the approximate u-decision
reduct based agents synthesized by using:

(i) The probabilistic voting measures similar to (I3) (cf. Section [H);

ii) The same probabilistic voting measures, applied to the optimized subsets
g
(ensembles) of the initial set of reducts (cf. Section Bl and [I5)20)]);

(iii) The normalizing neural network with the inputs corresponding to the
reducts, learnt over the training data (cf. Section E]).

We examined two benchmark data sets: DNA (60 attributes, 200041187 ob-
jects, 3 decision classes) and SAT (36 attributes, 4435+2000 objects, 6 decision
classes) from [19]. Additionally, we considered the modified DNA (denoted
as M-DNA), with only 20 attributes, which are known to provide the largest
amount of information (cf. [19]). For DNA we generated 60 approximate
p-decision reducts with various approximation parameter settings. For both
M-DNA and SAT, we were basing on 20 reducts.

We examined a number of probabilistic decision functions as the transition
functions in the probabilistic network. We decided on exp, : RN — Apn_,, for
a > 0, where for each s ¢ RN and i =1,..., N we have

exp(us[t])
> exp(as]j])

This function satisfies only the second part of ([[1I), i.e. the monotonic con-
sistency postulate. Even if si] = 0, for some ¢ = 1,..., N, we obtain
expq(s)i] > 0. However, for appropriately large «, the result exp,(s)[i] is
very close to 0. Moreover, in real applications, it is often better to add some
noise while combining the distributions, which is obtained by labeling com-
pletely unprobable decision classes with some small positive weights. Finally,
exp, : RY — Apn_; has the derivative matrix analogous to the sigomoidal
functions applied in the standard neural network framework, so it enables to
look at the performance of the back-propagation algorithm in a similar way.
The results are briefly presented in Table [Tl

(18) expq(s)[i] =

Table 1
Experimental result summary (Train set / Test set)

Data set | Approach (i) | Approach (ii) | Approach (iii)
M-DNA | 91.8% / 84.7% | 96.3% / 85.1% | 91.9% / 89.7%
SAT 83.3% / 53.8% | 86.8% / 54.0% | 82.6% / 55.0%
DNA 97.2% / 85.8% | 100% / 86.9% | 96.0% / 93.0%
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10 Conclusions

We have briefly presented the approach to data classification with use of data
based probability distributions and NNNs advocating that this method pro-
vides additional knowledge otherwise inaccessible during classification. By
performing initial experiments we verify potential usefulness of this approach
in some applications. We sincerely plan to foster this direction of research. In
the future, we want to publish the complete description of all steps taken in
the paper, especially the full proof of the convergence of NNN’s learning algo-
rithm. More experiments are also planned to establish some form of common
knowledge about the types of data most suitable for this approach.
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