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Abstract. Generalization of the fundamental rough set discernibility
tools aiming at searching for relevant patterns for complex decisions is
discussed. As an example of application, there is considered the post-
surgery survival analysis problem for the head and neck cancer cases.
The goal is to express dissimilarity between different survival tendencies
by means of clinical information. It requires handling decision values in
form of plots representing the Kaplan-Meier product estimates for the
groups of patients.

1 Introduction

In many rough set approaches to data analysis, especially these dedicated
to (strongly) inconsistent data tables, where the decision class approximations
cannot be determined to a satisfactory degree, decisions can take more complex
forms, e.g., the collections or probabilistic distributions of the original decision
values (cf. [6, 10]). In the same way, one could consider, e.g., statistical esti-
mates, plots, etc., definable using the original attributes, in a way appropriate
for a particular decision problem. Then, one should search for relevant patterns
for approximation of such decision structures. We study how complex decision se-
mantics can influence the algorithmic framework and results of its performance.
We show that quite unusual structures can be still handled using just slightly
modified rough set algorithms based on discernibility and Boolean reasoning [9].

Complex attribute values occur often in the medical domain, while analyzing
heterogeneous data gathering series of measurements, images, texts, etc. [2]. We
illustrate our approach using data representing medical treatment of patients
with the head and neck cancer cases. The data table, collected for years by
Medical Center of Postgraduate Education in Warsaw, Poland, consists of 557
patient records described by 29 attributes. The most important attributes are
well-defined qualitative features. The decision problem, however, requires ap-
proximation of especially designed complex decision attribute, corresponding to
the needs of the survival analysis [3].



One may conclude that the proposed methodology is applicable not only to
the presented case study but also to other medical, as well as, e.g., multimedia or
robotics problems. The results can also be treated as a step towards hybridization
of case-based reasoning with the rough set approach [4, 7].

2 Illustrative Example

In rough set theory the sample of data takes the form of an information
system A = (U,A), where each attribute a ∈ A is a function a : U → Va from
the universe U into the set Va of all possible values of a. Figure 1 illustrates the
meaning of the attribute values for the information system A = (U,A), where
A = {#, ttr, stl, stcr, loc, gap, rec}. U gathers 557 patients labelled with their
values for the elements of A. For instance, the object with the vector of values
(1, after, T2, cN3, throat, 3.5, 1) corresponds to a patient, who was treated with
one-sided operation, after unsuccessful radiotherapy, with the local stage of can-
cer classified as T2, the regional stage clinically (before the operation) classified
as cN3, with the cancer recognized in the throat, the last notification done after
3.5 years, during which the cancer recurrence was observed.

Column with description Values with description

# – No. of Sides Operated 1 – operation needed at one side; 2 – at both sides

ttr – Type of Treatment
only – only operation applied; radio – together with
radiotherapy; after – after unsuccessful radiotherapy

stl – Local Stage T1, T2, T3, T4

stcr – Clinical Regional Stage cN0, cN1, cN2, cN3

loc – Localization larynx, throat, other

gap – Time Interval Gap the gap between operation and the last notification

rec – Recurrence Notification 1 – recurrence observed; 0 – otherwise

Fig. 1. The selected attributes of medical data

Object u ∈ U supports descriptor a = va iff a(u) = va. Descriptors, treated as
boolean unary predicates, are atomic logical formulas. Descriptors for quantitative
attributes can be built using also, e.g., inequalities. According to the experts, a
person who survives more than 5 years after surgery is regarded as the success
case, even if the same type of cancer repeats after. A person who dies within 5
years can be the defeat or unknown case due to the reason of death. We obtain
the following decision classes of patients, described by means of conjunctions of
descriptors built over qualitative rec and quantitative gap:

1. defeat : the set of objects, which support conjunction rec = 1 ∧ gap < 5
2. unknown : the set of objects, which support conjunction rec = 0 ∧ gap < 5
3. success: the set of objects, which support descriptor gap ≥ 5

One of the aims of rough set theory is to approximate decision classes by means
of conditional attributes [5]. We want to approximate defeat, unknown, and suc-
cess using clinical information. We consider decision table A = (U,C ∪ {d})
with conditional attributes C = {#, ttr, stl, stcr, loc} and distinguished decision
attribute d /∈ C, which indicates decision classes defined above.



Decision approximation is usually stated by means of ”if .. then ..” rules, such
that (almost) all objects that support the conditional part of the rule, drop into
the specified decision class. Inconsistency of A = (U,C ∪ {d}) can be expressed
by, e.g., boundary regions of decision classes [5], generalized decision sets [8, 9],
or rough memberships [6, 10], which label each u ∈ U with distribution of its
indiscernibility class [u]C = {u′ ∈ U : ∀a∈C(a(u) = a(u′))} among decisions:

−→µ d/C(u) =

〈
|[u]C ∩ defeat|

|[u]C |
,
|[u]C ∩ unknown|

|[u]C |
,
|[u]C ∩ success|

|[u]C |

〉
(1)

Inconsistency of A corresponds to distributions, which do not specify a unique
decision class for some u ∈ U . Figure 2 illustrates such distributions for a couple
of elements of U . In this case one can expect difficulties in constructing reason-
able decision rules. We discuss a solution of this problem in the next section.

u # ttr stl stcr loc |[u]C | |[u]C ∩ def | |[u]C ∩ unk| |[u]C ∩ suc|
0 1 only T3 cN1 larynx 25 15 4 6

4 1 after T3 cN1 larynx 38 8 18 12

24 1 radio T3 cN1 larynx 23 6 7 10

28 1 after T3 cN0 throat 18 4 8 6

57 1 after T4 cN1 larynx 32 12 14 6

91 1 after T3 cN1 throat 35 5 16 14

152 1 only T3 cN0 larynx 27 9 14 4

255 1 after T3 cN0 larynx 15 2 6 7

493 1 after T3 cN1 other 19 6 7 6

552 2 after T4 cN2 larynx 14 6 3 5

Fig. 2. Statistics for randomly selected objects. The first column contains the object’s
ordinal number. The next five columns contain the attribute values. The last four
columns contain cardinalities enabling calculation of the rough membership coefficients.

3 Discernibility-based reduction

Approximation of decision classes corresponds to the construction of an ap-
proximation space [8], where objects with similar decisions are well described
by conditional formulas. Given A = (U,C ∪ {d}), we search for indiscernibility
classes [u]C , such that if u′ ∈ [u]C , then d(u′) is close to d(u). We also try to
generalize such classes by reducing the number of needed attributes (cf. [8, 9]).
Let us consider discernibility matrix MA (cf. [9]), where:

1. columns correspond to attributes a ∈ C
2. rows correspond to the pairs of objects (u, u′) such that d(u) 6= d(u′)
3. for row (u, u′) and column a ∈ C we put 1, if a(u) 6= a(u′) and 0 otherwise

Any irreducible covering B ⊆ C of MA
1 corresponds to a decision reduct – an

irreducible subset of attributes providing consistent subtable B = (U,B ∪ {d}).
1 The covering of binary MA takes the form of any subset of columns B ⊆ C such that

for any row we have at least one a ∈ B with value 1 on this row.



For inconsistent A = (U,C∪{d}) there is impossible to cover MA at all. Still,
one can search for reducts as the approximate coverings of MA or as the cover-
ings of modified matrices (cf. [8–10]). For instance, the rows of a discernibility
matrix can correspond to the pairs of objects with different rough membership
distributions. Any irreducible covering of such a matrix corresponds to a decision
reduct for consistent decision table A = (U,C ∪ {−→µ d/C}). Then, however, we
cannot group the objects with very similar distributions. A solution ([10]) is to
consider only the pairs (u, u′) with enough distant distributions, i.e. such that

%
(−→µ d/C(u),−→µ d/C(u′)

)
≥ α (2)

for a specified function % and threshold α > 0. Irreducible coverings of such ob-
tained matrix, further denoted by Mα

A, provide α-approximate decision reducts
B ⊆ C, which approximately preserve information induced by C about d. Con-
dition (2) can be applied with any other function %, which measures distances
between any other complex decision values calculated for classes [u]C , u ∈ U .

u u′ # ttr stl stcr loc

0 255 0 1 0 1 0

0 91 0 1 0 0 1

0 4 0 1 0 0 0

0 28 0 1 0 1 1

0 152 0 0 0 1 0

0 24 0 1 0 0 0

u u′ # ttr stl stcr loc

152 255 0 1 0 0 0

152 552 1 1 1 1 0

91 552 1 0 1 1 1

57 255 0 0 1 1 0

255 552 1 0 1 1 0

24 152 0 1 0 1 0

Fig. 3. Mα
A for U = {0, 4, 24, 28, 57, 91, 152, 255, 493, 552}. The rows correspond to the

pairs, for which Euclidean distance between distributions is not lower than α = 0.365.
One can see that the only irreducible covering takes the form of the set B = {ttr, stcr}.
This is the only α-approximate decision reduct in this case.

The main theoretical contribution of this paper is the reduction methodology
based on conditions similar to (2), but at the level of local decision reducts [9].
An α-approximate local reduct is built by discerning a given u ∈ U from all
u′ ∈ U such that inequality (2) holds. It corresponds to operations on matrix
Mα

A (u), which is Mα
A restricted to the rows related to u. A covering B ⊆ C of

Mα
A (u) generates the rule described by the u’s values on B: if u′ ∈ U supports

descriptors a = a(u) for all a ∈ B, then the decision of u′ is close to that of u.
Just like at the level of decision reducts, we can consider arbitrary criteria

for measuring the decision distances. A general problem is that sometimes there
can be objects u′, u′′ ∈ U , which do not need to be discerned from u but their
decision characteristics are too distant to each other to put both of them to the
same class.2 Therefore, we should add to Mα

A (u) also the rows encoding the need
of keeping at least one of objects u′, u′′ outside the support of any local reduct
derived at the basis of u. It is illustrated in Figure 4 for criterion (2). This is
a novel approach, which can be extended to other types of complex decisions,
assuming a distance measure between the decision values is given.

2 This problem does not occur in the classical case, where objects u′, u′′ ∈ U need not
to be discerned from u, iff d(u) = d(u′) and d(u) = d(u′′), what implies d(u′) = d(u′′).



u u′ # ttr stl stcr loc

0 91 0 1 0 0 1

152 255 0 1 0 1 1

91 552 1 0 1 1 1

57 255 0 0 1 1 1

24 152 0 1 0 1 1

Fig. 4. Matrix Mα
A (u) for u = 91 and α = 0.365.

Its coverings correspond to α-approximate local reducts
B1 = {ttr, stl}, B2 = {stl, stcr}, and B3 = {loc}.
Their supports are equal [u]B1 = {4, 28, 91, 255, 493},
[u]B2 = {4, 57, 91, 493}, and [u]B3 = {28, 91}. They
correspond to patterns ttr = after ∧ stl = T3, ttr =
after ∧ stcr = cN1, and loc = throat.

Another problem corresponds to the task of case-based reasoning, aiming at
deriving new decisions from the clusters of objects with similar decision charac-
teristics (cf. [4, 7]). As an example, let us consider the case of handling rough
membership distributions. We can label a given cluster [u]B , obtained as the
support of α-approximate local reduct B ⊆ C obtained at the basis of u ∈ U ,
with distribution −→µ d/B(u) calculated as (1), for [u]B instead of [u]C . One can
rewrite −→µ d/B(u) as the average of distributions −→µ d/C(u′), u′ ∈ U .

It is shown in [10] that if Euclidean distances between distributions −→µ d/C
of all elements of [u]B are lower than α, what is the case for α-approximate
local reducts, then the same can be said about distances between −→µ d/C(u′) and
−→µ d/B(u), for any u′ ∈ [u]B . Therefore, we can talk about a complex decision
rule saying that if a given object supports descriptors a = a(u), for any a ∈ B,
then its decision distribution is close to −→µ d/B(u).

The above kind of case-based reasoning analysis should be reconsidered for
any other applied decision and distance semantics. For instance, in the following
sections we discuss the local reduct patterns grouping similar plots representing
the Kaplan-Meier product estimates (cf. [3]). Although we can search for the
groups of such plots using the same discernibility procedure as above, further
research is needed to examine to what extent the estimate calculated for some
class [u]B , u ∈ U , B ⊆ C, can be regarded as a representative for the collection
of mutually similar estimates calculated locally for classes [u′]C , u′ ∈ [u]B .

4 Discernibility approach to the survival analysis

In the survival analysis, one distinguishes complete and censored objects. In
case of the considered medical data, the set of complete objects coincides with the
defeat decision class. The Kaplan-Meier product-limit estimate (cf. [3]) provides
the means for construction of survival function S(t), which returns cumulative
proportion of cases surviving up to the time t after operation. We define it as

S(t) =
∏

u∈defeat:gap(u)≤t

|U | − |‖gap ≤ gap(u)‖A|
|U | − |‖gap ≤ gap(u)‖A|+ 1

(3)

where ‖gap ≤ gap(u)‖A = {u′ ∈ U : gap(u′) ≤ gap(u)}. S(t) can be recalculated
for any subset of U as illustrated in Figure 5. Since all the cases u ∈ U , such that
inequality gap(u) > 5 is satisfied, are censored (because they are successes), we
restrict ourselves to the survival plots within the range of [0, 5] years.

One used to assume that a given attribute provided more information, if it
split data onto subtables with less similar survival plots. For instance, Figure 5



illustrates the meaning of ttr. The patients not treated with radiotherapy seem
to have more chances for survival, because the corresponding plot has the high-
est level of chances after 5 years. It does not mean, however, that radiotherapy
should not be applied. The type of treatment ttr = only is applied to relatively
less severe cases, which makes the corresponding survival characteristics more
optimistic ”by definition”. This is an example why the decision behaviors cor-
responding to the values of single attributes should be analyzed in the context
of other attributes. It was a motivation for applying to this data the proposed
generalization of the rough set approach to searching for approximate reducts.
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Fig. 5. The plots of function S(t). The left plot corresponds to the whole U . The right
plots correspond to subtables filtered with respect to foregoing values of attribute ttr.

Let us label each u ∈ U with the survival function SCu (t) obtained for the
indiscernibility class [u]C . Since functions SCu (t) seem to contain more adequate
information than −→µ d/C(u), we repeat the discernibility reduction process de-
scribed in the previous section for the survival plot decisions. To do this, we can
follow the same procedures of creating and analyzing α-approximate discernibil-
ity matrices Mα

A and Mα
A (u), but for the decision distances calculated between

the survival plots instead of Euclidean distances between distributions.
We considered two examples of distances enabling to compare pairs of objects

u, u′ ∈ U . The first one, %area(u, u′), equals the area between the plots of SCu (t)
and SCu′(t). The second one, %merged(u, u

′), refers more to particular cases than
to the plots. It averages the differences between the survival estimates for the
defeat objects in [u]C ∪ [u′]C before and after merging [u]C and [u′]C within a
more general cluster. A broader family of distances should be analyzed in future.

Given functions %area or %merged, we can search for clusters of objects with
α-approximately similar Kaplan-Meier characteristics. Procedure based on dis-
cernibility matrices Mα

A (u) assures that any local reduct B ⊆ C obtained for a
given u ∈ U forms the cluster [u]B of α-approximately similar objects. A ques-
tion is whether the plots SBu (t) corresponding to such clusters can be regarded
as their representatives in the same way as discussed for distributions −→µ d/B(u).
As mentioned before, it must be analyzed, whether mutual closeness of estimates
SCu′(t) for all u′ ∈ [u]B assures the same kind of closeness to SBu (t). Although
the experiments confirm this tendency, further theoretical studies are needed.



5 Selected experimental results

We performed experiments for the data table described by conditional at-
tributes C = {#, ttr, stl, stcr, loc}. Just like in Section 3, we were generating Mα

A
and Mα

A(u) basing on criterion (2), now applied for distances %area and %merged.

α %area %merged %area %merged
0.3 {#, ttr, stl, stcr, loc} {ttr, stl, stcr, loc} 57 37

0.4 {ttr, stl, stcr, loc} {ttr, stl, loc} 39 43

0.5 {ttr, stl, stcr, loc} {stl, stcr, loc}, {#, stl, stcr}, {ttr, stl} 34 43

0.6 {stl, stcr} {stl, stcr}, {ttr, stl} 25 27

0.7 {stl, stcr}, {ttr, stl, loc} {stcr, loc}, {stl, stcr}, {ttr} 13 18

Fig. 6. The reduction results for various approximation thresholds, where the first col-
umn contains the threshold value α, two next columns contain α-approximate decision
reducts, and two last columns contain numbers of α-approximate local decision reducts.

Because of the lack of space, we focus just on two observations. The first
one concerns the type of treatment ttr. In Figure 6 we can see that ttr occurs in
majority of reducts, for various approximation thresholds. In case of %merged and
α = 0.7 it even begins to be an approximate reduct itself. On the other hand,
the occurrence of ttr together with other attributes for lower thresholds suggests
that it should not be considered totally independently, as noticed in Section 4.

|[u]B | B # ttr stl stcr loc

79 {ttr} ∗ only ∗ ∗ ∗
132 {ttr} ∗ radio ∗ ∗ ∗
346 {ttr} ∗ after ∗ ∗ ∗
82 {stl} ∗ ∗ T2 ∗ ∗
361 {stl} ∗ ∗ T3 ∗ ∗
276 {stcr} ∗ ∗ ∗ cN1 ∗
174 {loc} ∗ ∗ ∗ ∗ throat

46 {#, loc} 1 ∗ ∗ ∗ other

62 {#, loc} 2 ∗ ∗ ∗ larynx

|[u]B | B # ttr stl stcr loc

25 {stl, stcr} ∗ ∗ T4 cN0 ∗
27 {stl, stcr} ∗ ∗ T4 cN2 ∗
6 {stl, stcr} ∗ ∗ T4 cN3 ∗

102 {stcr, loc} ∗ ∗ ∗ cN0 larynx

49 {stcr, loc} ∗ ∗ ∗ cN2 larynx

14 {stcr, loc} ∗ ∗ ∗ cN3 larynx

11 {stcr, loc} ∗ ∗ ∗ cN0 other

6 {stcr, loc} ∗ ∗ ∗ cN2 other

5 {stcr, loc} ∗ ∗ ∗ cN3 other

Fig. 7. α-approximate local reducts obtained for α = 0.7 and %merged. The first column
contains the number of supporting objects. The second column contains attributes
defining the reduct. The last five columns describe the reduct patterns. For instance,
∗, ∗, T4, cN3, ∗ corresponds to pattern stl = T4 ∧ stcr = cN3, supported by 6 objects.

The most frequent attribute occurring in Figures 6, 7 is the local cancer stage
stl. This is very surprising because the initial hypothesis formulated by medical
experts was that stl can be reduced given the rest of considered clinical features.
Actually, stl does seem to provide less amount of information than the other
attributes while comparing the Kaplan-Meier estimates for their particular val-
ues. However, as often happens in the rough set reduction processes, potentially
least valuable attributes turn out to be crucial for discerning important cases.



6 Conclusions

We discussed a rough set approach to extraction of relevant patterns for com-
pound decisions. We considered decision values modeled by rough membership
distributions (cf. [6, 10]) and the Kaplan-Meier’s product-limit survival estimates
(cf. [3]). We focused on searching for possibly minimal subsets of attributes ap-
proximately preserving the decision information, as well as the clusters of objects
with approximately similar decision characteristics, described by possibly gen-
eral patterns. The solutions were presented as approximate reducts derived using
appropriately modified rough set discernibility procedures (cf. [9]).

In future we plan to develop a general approach to visualization of the chains
of patterns characterized by various thresholds for decision distances, as initiated
in [1]. We are going to strengthen the correspondence between the issue of the
unified representation of the classes of objects with similar decision characteris-
tics and the case-based reasoning challenges (cf. [7]). We also plan to continue
the experiments concerning the considered medical data, in purpose of extending
the results of this paper, as well as our previous experiences in this area.
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