
Rough Set Algorithms in Classification Problem

Jan G. Bazan1, Hung Son Nguyen2,3, Sinh Hoa Nguyen2,3

Piotr Synak3, Jakub Wróblewski2,3
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Abstract: In the paper we present some algorithms, based on rough set the-
ory, that can be used for the problem of new cases classification. Most of the
algorithms were implemented and included in Rosetta system [43]. We present
several methods for computation of decision rules based on reducts. We discuss
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resolving conflicts between decision rules classifying a new case to different cat-
egories (classes).
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1 Introduction

The term ”classification” concerns any context in which some decision is taken or
a forecast is made on the basis of currently available knowledge or information.
A classification algorithm is an algorithm which permits us to repeatedly make
a forecast on the basis of accumulated knowledge in new situations. We consider
here a classification related to construction of a classification algorithm on the
basis of current knowledge. Such algorithm is applied then to classify objects
previously unseen. Each new object is assigned to a class belonging to a prede-
fined set of classes on the basis of observed values of suitably chosen attributes
(features).

Many approaches have been proposed for constructing classification algo-
rithms, among them we would like to point out classical and modern statistical
techniques (see e.g. [33], [20]), neural networks (see e.g. [33], [19]), decision trees
(see e.g. [13], [48], [58], [60], [33], [49]), decision rules (see e.g. [14], [31], [59], [10],
[32], [61], [22], [55], [34], [43]) inductive logic programming (see e.g. [17]).

In this paper we present some methods for extracting laws from data, based
on rough set approach (see [44]) and Boolean reasoning (see [11]). Most of them
were implemented and included in Rosetta system [43]. Results of performed
experiments on different kinds of data show that they are very promising (see
e.g. [3], [4], [5], [7], [8]).
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Standard rough set methods (see [44], [45], [52]) are not always sufficient
for extracting laws from data. One of the reasons is that these methods are
not taking into account the fact that part of the reduct set (see Section 2) is
chaotic i.e. is not stable in randomly chosen samples of a given decision table. We
propose a method for selection of feature (attribute) sets relevant for extracting
laws from data. These sets of attributes are called dynamic reducts (see [4]).
Dynamic reducts are in some sense the most stable reducts of a given decision
table, i.e. they are the most frequently appearing reducts in subtables created
by random samples of a given decision table.

The most popular method for classification algorithms construction is based
on learning rules from examples. The methods based on calculation of all reducts
allow to compute, for a given data, the descriptions of concepts by means of
decision rules (see [45], [44]). Unfortunately, the decision rules constructed in this
way can often be not appropriate to classify unseen cases. We propose a method
of the decision rule generation on the basis of dynamic reducts. We suggest
that the rules calculated by means of dynamic reducts are better predisposed to
classify unseen cases (see [3], [4], [5], [6]).

The paper is structured as follows. In Section 2 we present rough set pre-
liminaries. Standard rough set algorithms for synthesis of decision rules from
decision tables are described in Section 3.

For purpose of data preprocessing we propose methods for intelligent scaling
of real value attributes (see Section 4). Our algorithms are especially useful if
the input data table contains continues attributes with many different values.
Applying discretization to data decreases further processing time of many meth-
ods as well as increases quality of results, e.g. decision rules containing scaled
attributes are more general.

Our methods for decision rule generation are based on algorithm for the
reduct set computation (see Section 2). Unfortunately, the searching problem for
reduct of minimal length (minimal number of attributes) is NP-hard (see [51]).
Therefore we often apply approximation algorithms to obtain some knowledge
about the reduct set (see [38], [62]). In Section 5 we propose some heuristic for
finding local reducts. In Section 6 we present a genetic algorithm for reduct set
computation which is very fast and gives its good approximation.

In Sections 7, 8, 9, and 10 we recall the notion of a dynamic reduct and we
give some statistical arguments showing that dynamic reducts offer a good tool
for extracting laws from decision table.

Some applications of dynamic reducts, e.g. for decision rules generation and
dynamic selection of cuts in discretization, are presented in Sections 4, 11 and
12.

In Section 13 we show how the idea of dynamic reducts can be adapted for
new methods of dynamic rules computation.

Sometimes the decision rules generated by application of rough set methods
can be not acceptable as laws valid for data encoded in a given decision table.
This occurs, e.g. when the number of examples supporting the decision rule (see
Section 3) is relatively small. In Section 14 we introduce approximate rules to
eliminate this drawback. Different methods (e.g. [1], [35], [46], [67]) are now
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widely used to generate approximate decision rules.
When a set of decision rules has been computed then it is necessary to decide

how to resolve conflicts between rule sets classifying tested objects to different
decision classes. In Section 15 we present several measures of the strength of
rule set matched by a given tested object and classifying this object to decision
determined by the rules from this set.

In Section 16 we present a general scheme of classification algorithms based
on methods and techniques described in previous sections.

2 Rough Set Preliminaries

In this section we recall some basic notions related to information systems and
rough sets.

An information system is a pair A = (U,A), where U is a non-empty, finite set
called the universe and A – a non-empty, finite set of attributes, i.e. a : U → Va
for a ∈ A, where Va is called the value set of a.

Elements of U are called objects and interpreted as, e.g. cases, states, pro-
cesses, patients, observations. Attributes are interpreted as features, variables,
characteristic conditions etc.

We also consider a special case of information systems called decision tables.
A decision table is an information system of the form A = (U,A ∪ {d}), where
d 6∈ A is a distinguished attribute called decision. The elements of A are called
conditions.

One can interpret the decision attribute as a kind of classifier on the universe
of objects given by an expert, a decision-maker, an operator, a physician, etc. In
machine learning decision tables are called training sets of examples (see [28]).

The cardinality of the image d(U) = {k : d(s) = k for some s ∈ U} is called
the rank of d and is denoted by r(d).

We assume that the set Vd of values of the decision d is equal to {v1

d, ..., v
r(d)
d }.

Let us observe that the decision d determines a partition CLASSA(d) =

{X1
A, . . . , X

r(d)
A } of the universe U , where Xk

A = {x ∈ U : d(x) = vkd} for
1 ≤ k ≤ r(d). CLASSA(d) is called the classification of objects in A determined
by the decision d. The set Xi

A is called the i-th decision class of A. By XA(u)
we denote the decision class {x ∈ U : d(x) = d(u)}, for any u ∈ U .

Let A = (U,A) be an information system. For every set of attributes B ⊆ A,
an equivalence relation, denoted by INDA(B) and called the B-indiscernibility
relation, is defined by

INDA(B) = {(u, u′) ∈ U2 : for every a ∈ B, a(u) = a(u′)} (1)

Objects u, u′ satisfying the relation INDA(B) are indiscernible by attributes
from B.

An attribute a ∈ B ⊆ A is dispensable in B if INDA(B) = INDA(B \ {a}),
otherwise a is indispensable in B. A set B ⊆ A is independent in A if every
attribute from B is indispensable in B, otherwise the set B is dependent in A.
A set B ⊆ A is called a reduct in A if B is independent in A and INDA(B) =
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INDA(A). The set of all reducts in A is denoted by RED(A). This is a classical
notion of reduct and it is sometimes referred to as global reduct.

Let A = (U,A) be an information system with n objects. By M(A) (see [51])
we denote an n× n matrix (cij), called the discernibility matrix of A such that

cij = {a ∈ A : a(xi)6=a(xj)} for i, j = 1, . . . , n . (2)

A discernibility function fA for an information system A is a boolean function
of m boolean variables a1, . . . , am corresponding to the attributes a1, . . . , am
respectively, and defined by

fA(a1, . . . , am) =
∧
{
∨
cij : 1 ≤ j < i ≤ n, cij 6=∅} (3)

where cij = {a : a ∈ cij}.
It can be shown (see [51]) that the set of all prime implicants of fA determines

the set of all reducts of A.
Below we present two deterministic algorithms (see [15]) for computation of

the whole reduct set REDA(A). Both algorithms compute discernibility matrix
of A.

Algorithm 1. Reduct set computation
Input:

Information system A = (U,A)
Output:

Set REDA(A) of all reducts of A
Method:

Compute indiscernibility matrix M(A) = (Cij)
Reduce M using absorbtion laws
d - number of non-empty fields of reduced M
Build a families of sets R0, R1, ..., Rd in the following way:
begin
R0 = ∅
for i = 1 to d
begin

Ri = Si ∪ Ti, where Si = {R ∈ Ri−1 : R ∩ Ci 6= ∅}
and Ti = (R ∪ {a})a∈Ci,R∈Ri−1:R∩Ci=∅

end
end
Remove dispensable attributes from each element of family Rd
Remove redundant elements from Rd
REDA(A) = Rd

2

It is easy to see that the complexity of this algorithm is exponential. The
second algorithm is a modification of Algorithm 1. It allows to stop computation
and get partially computed reduct set.
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Algorithm 2. Reduct set computation with stop possibility
Input:

Information system A = (U,A)
Output:

Set REDA(A) of all reducts of A
Method:

Compute indiscernibility matrix M(A) = (Cij)
Reduce M using absorbtion laws
d - number of non-empty fields of reduced M
Build a families of sets R0, R1, ..., Rd in the following way:
begin

Compute R1 (see Algorithm 1)
i = 1
while i > 0 do
begin

if stop then return
if Ri = ∅ then
begin

i = i− 1
continue

end
Remove from family Ri the first element
Compute Ri+1 (see Algorithm 1)
i = i+ 1
if i = d then
begin

Remove from Rd redundant elements
REDA(A) = REDA(A) ∪Rd
i = i− 1

end
end

end
2

If A = (U,A) is an information system, B ⊆ A is a set of attributes and
X ⊆ U is a set of objects, then the sets: {u ∈ U : [u]B ⊆ X} and {u ∈ U :
[u]B ∩X 6=∅} are called the B-lower and the B-upper approximation of X in A,
and they are denoted by BX and BX, respectively.

The set BNB(X) = BX −BX is called the B-boundary of X. When B = A
we also write BNA(X) instead of BNA(X) .

Sets which are unions of some classes of the indiscernibility relation INDA(B)
are called definable by B (or, B-definable, in short). A set X is thus B-definable
iff BX = BX. Some subsets (categories) of objects in an information system
cannot be exactly expressed by employing available attributes but they can be
defined roughly.
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The set BX is the set of all elements of U which can be classified with
certainty as elements of X, having the knowledge about them represented by
attributes from B; the set BNB(X) is the set of elements which one can classify
neither to X nor to −X having knowledge about objects represented by B.

If X1, . . . , Xr(d) are decision classes of A then the set BX1 ∪ . . . ∪BXr(d) is
called the B-positive region of A and is denoted by POSB(d) .

If A = (U,A∪{d}) is a decision table and B ⊆ A , then we define a function
∂B : U → P(Vd}), called the B-generalized decision of A, by

∂B(x) = {v ∈ Vd : ∃x′ ∈ U (x′INDA(B)x and d(x) = v)} . (4)

The A-generalized decision ∂A of A is called the generalized decision of A.

A decision table A is called consistent (deterministic) if card(∂A(x)) = 1
for any x ∈ U , otherwise A is inconsistent (non-deterministic). It is easy to see
that a decision table A is consistent iff POSA(d) = U . Moreover, if ∂B = ∂B′

then POSB(d) = POSB′(d) for any pair of non-empty sets B,B′ ⊆ A.

A subset B of the set A of attributes of a decision table A = (U,A∪{d}) is a
relative reduct of A iff B is a minimal set with respect to the following property:
∂B = ∂A. The set of all relative reducts of A is denoted by RED(A, d).

Let A = (U,A ∪ {d}) be a consistent decision table and let M(A) = (cij)
be its discernibility matrix. We construct a new matrix M ′(A) = (c′ij) assuming
c′ij = ∅ if d(xi) = d(xj) and c′ij = cij − {d}, otherwise. The matrix M ′(A) is
called the relative discernibility matrix of A. Now one can construct the relative
discernibility function fM ′(A) of M ′(A) in the same way as the discernibility
function has been constructed from the discernibility matrix.

It can be shown (see [51]) that the set of all prime implicants of fM ′(A)

determines the set of all relative reducts of A.

Another important type of reducts are local reducts. Local reduct r(xi) ⊆ A
(or a reduct relative to decision and object xi ∈ U ; where xi is called a base
object) is a subset of A such that:

a) ∀ xj ∈ U , d(xi) 6= d(xj) =⇒ ∃ ak ∈ r(xi): ak(xi) 6= ak(xj)

b) r(xi) is minimal with respect to inclusion.

If A = (U,A ∪ {d}) is a decision table then any system B = (U ′, A ∪ {d})
such that U ′ ⊆ U is called a subtable of A.

The problem of new cases classification can be described in the following
way. Let W = (W,A∪{d}) be a hypothetical universal decision table (including
known and unknown objects describing an actual considered aspect of reality)
and let A = (U,A ∪ {d}) be a given subtable of the universal decision table.
Let u ∈ W be a so called tested object. Our task consists in assigning the value
d(u) of the decision d to the tested objects u, knowing only values of condition
attributes of u, and relying on a given decision table A. In another words we
would like to classify object u to the proper decision class Xk ∈ CLASSA(d)
(where k ∈ 1, ..., r(d)) on the basis of knowledge included in A. A solution of
this problem is a classification algorithm sufficiently approximating the decision
function d.
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3 Decision Rules

Let A = (U,A ∪ {d}) be a decision table and let V =
⋃
{Va : a ∈ A} ∪ Vd.

Atomic formulas over B ⊆ A∪ {d} and V are expressions of the form a = v,
called descriptors over B and V , where a ∈ B and v ∈ Va. The set F(B, V )
of formulas over B and V is the least set containing all atomic formulas over
B and V and closed with respect to the classical propositional connectives ∨
(disjunction), ∧ (conjunction), and ¬ (negation).

Let ϕ ∈ F(B ,V ). Then by |ϕ|A we denote the meaning of ϕ in a decision
table A, i.e. the set of all objects in U with property ϕ, defined inductively by

1. if ϕ is of the form a = v then |ϕ|A = {x ∈ U : a(x) = v};
2. |ϕ ∧ ϕ′|A = |ϕ|A ∩ |ϕ′|A; |ϕ ∨ ϕ′|A = |ϕ|A ∪ |ϕ′|A; |¬ϕ|A = U − |ϕ}A

The set F(A,V ) is called the set of conditional formulas of A and is denoted
by C(A,V ).

Any formula of the form (a1 = v1) ∧ ... ∧ (al = vl), where vi ∈ Vai (for
i = 1, ..., l) and P = {a1, ..., al} ⊆ A, is called a P-basic formula of A.

If ϕ is a P-basic formula of A and Q ⊆ P , then by ϕ/Q we mean the Q-basic
formula obtained from the formula ϕ by removing from ϕ all its elementary
subformulas (a = va) such that a ∈ P \Q.

A decision rule for A is any expression of the form ϕ ⇒ d = v where ϕ ∈
C(A,V ), v ∈ V d and |ϕ|A 6= ∅. Formulas ϕ and d = v are referred to as the
predecessor and the successor of decision rule ϕ⇒ d = v respectively.

If r is a decision rule in A, then by Pred(r) we denote the predecessor of r
and by Succ(r) we denote the successor of r .

An object u ∈ U is matched by a decision rule ϕ ⇒ d = vkd (where 1 ≤ k ≤
r(d)) iff u ∈ |ϕ|A. If u is matched by ϕ ⇒ d = vkd then we say that the rule is
classifying u to decision class Xk.

The number of objects matched by a decision rule ϕ ⇒ d = v, denoted by
MatchA(ϕ⇒ d = v) is equal card(|ϕ|A).

The number SuppA(ϕ⇒ d = v) = card(|ϕ|A∩|d = v|A) is called the number
of objects supporting a decision rule ϕ⇒ d = v.

A decision rule ϕ ⇒ d = v for A is true in A, symbolically ϕ ⇒A d = v,
iff |ϕ|A ⊆ |d = v|A. If a decision rule ϕ ⇒ d = v is true in A, we say that
the decision rule is consistent in A, otherwise the decision rule ϕ ⇒ d = v is
inconsistent or approximate in A.

If r is a decision rule in A, then the number µA(r) = SuppA(r)
MatchA(r) is called the

coefficient of consistency of the rule r. The coefficient µA(r) can be understood
as a degree of consistency of the decision rule r. It is easy to see that a decision
rule r for A is consistent iff µA(r) = 1.

The coefficient of consistency of r can be also treated as a degree of inclusion
of |Pred(r)|A in |Succ(r)|A (see [47]).

If ϕ ⇒ d = v is a decision rule for A and ϕ is P-basic formula of A (where
P ⊆ A), then the decision rule ϕ ⇒ d = v is called a P-basic decision rule for
A, or basic decision rule in short.
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Let A = (U,A ∪ {d}) be a consistent decision table with n objects u1, ..., un
and with m condition attributes a1, ..., am. We present two methods for basic
decision rule synthesis for A (see [52], [53], [45]).

The first method consists of two steps. In the first step we compute the set
RED(A, d) of all relative reducts of decision table A. In the second step, for each
reduct R = {b1, ..., bl} ∈ RED(A, d) (where l ≤ m) and any object u ∈ U we
generate a decision rule in the following way: as the predecessor of the decision
rule we take the conjunction (b1 = b1(u))∧ ...∧ (bl = bl(u)) and as the successor
of the rule we take decision attribute d with value d(u). Hence, the constructed
decision rule for the reduct R and the object u is of the form

(b1 = b1(u)) ∧ ... ∧ (bl = bl(u))⇒ d = d(u).

The second method returns basic decision rules with minimal number of
descriptors (see [45], [52]).

Let ϕ ⇒ d = v be a P-basic decision rule of A (where P ⊆ A) and let
a ∈ P . We say that the attribute a is dispensable in the rule ϕ ⇒ d = v iff
|ϕ ⇒ d = v|A = U implies |ϕ/(P \ {a}) ⇒ d = v|A = U , otherwise attribute a
is indispensable in the rule ϕ⇒ d = v. If all attributes a ∈ P are indispensable
in the rule ϕ⇒ d = v, then ϕ⇒ d = v is called independent in A.

The subset of attributes R ⊆ P is called a reduct of P-basic decision rule
ϕ⇒ d = v, if ϕ/R⇒ d = v is independent in A and |ϕ⇒ d = v|A = U implies
|ϕ/R ⇒ d = v|A = U . If R is a reduct of the P-basic decision rule ϕ ⇒ d = v,
then ϕ/R⇒ d = v is said to be reduced. If R is a reduct of the A-basic decision
rule ϕ ⇒ d = v, then ϕ/R ⇒ d = v is said to be an optimal basic decision rule
of A (a basic decision rule with minimal number of descriptors). The set of all
optimal basic decision rules of A is denoted by RUL(A).

Let A = (U,A ∪ {d}) be a consistent decision table and M ′(A) = (c′ij) be

its relative discernibility matrix. We construct a new matrix M(A, k) = (ckij)

for any xk ∈ U assuming ckij = c′ij if d(xi)6=d(xj)&(i = k ∨ j = k) and ckij = ∅,
otherwise. The matrix M(A, k) is called the k-relative discernibility matrix of A.
Now one can construct the k-relative discernibility function fM(A,k) of M(A, k)
in the same way as the discernibility function has been constructed from the
discernibility matrix (see Section 2).

It can be shown that the set of all prime implicants of functions fM(A,k) (for
k = 1, ..., card(U)) determines the set of all basic optimal rules of A .

Let us assume now that considered decision tables are inconsistent. One can
transform an arbitrary inconsistent decision table A = (U,A∪{d}) into a consis-
tent decision table A∂ = (U,A∪{∂A}) where ∂A : U → P(V d) is the generalized
decision of A defined in Section 2. It is easy to see that A∂ is a consistent deci-
sion table and one can apply to A∂ the described methods to construct decision
rules. Hence one can compute decision rules for any inconsistent decision table.
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4 Discretization

Suppose we have a decision table A = (U,A ∪ {d}) where card(Va) is high for
some a ∈ A. Then there is a very low chance that a new object is recognized by
rules generated directly from this table, because the attribute value vector of a
new object will not match any of these rules. Therefore for decision tables with
real value attributes some discretization strategies are built to obtain a higher
quality of classification rules. This problem is intensively studied in e.g. [39] and
we consider discretization methods presented in [39], [37], [38] and [41]. These
methods are based on rough set techniques and boolean reasoning.

4.1 Basic notions

Let A = (U,A∪{d}) be a decision table where U = {x1, x2, . . . , xn}. We assume
Va = [la, ra) ⊂ R for any a ∈ A where R is the set of real numbers. In the sequel
we assume that A is a consistent decision table.

Any pair (a, c), where a ∈ A and c ∈ R, defines a partition of Va into left-
hand-side and right-hand-side interval. Formally, any attribute-value pair (a, c)
is associated with a new binary attribute f(a,c) : U → {0, 1} such that

f(a,c)(u) =

{
0 if a(u) < c
1 otherwise

(5)

In this sense, the pair (a, c) is called a binary discriminators or cut on Va. Usually,
discretization of real value attributes is determined by cuts.

Let us fix an attribute a ∈ A. Any set of cuts

Da = {(a, ca1), (a, ca2), . . . , (a, caka)}

where ka ∈ N and ca0 = la < ca1 < ca2 < . . . < caka < ra = caka+1, defines a
partition on Va (for a ∈ A) into sub-intervals i.e.

Va = [c0, c
a
1) ∪ [ca1 , c

a
2) ∪ . . . ∪ [caka , c

a
ka+1).

The set of cuts Da on a defines a discretization of a, i.e. new discreet attribute
aDa : U → {0, .., ka} such that

aDa(x) = i ⇐⇒ a(x) ∈ [cai , c
a
i+1)

for any x ∈ U and i ∈ {0, .., ka} (see Figure 1).
Analogously, any global discretization is determined by a set of cuts on all

real value attributes D =
⋃
a∈ADa. Any set of cuts

D =
⋃
ai∈A

Dai =
{(
a1, c

1
1

)
, . . . ,

(
a1, c

1
k1

)}
∪
{(
a2, c

2
1

)
, . . . ,

(
a2, c

2
k2

)}
∪ . . .

transforms the original decision table A = (U,A ∪ {d}) into new (discreet)
decision table A|D = (U,AD ∪ {d}), where AD = {aDa : a ∈ A}. The table A|D
is called the D-discretized table of A.
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-
la

ca1 ca2 . . . caka−1 caka
ra

a :

� �� �� �� �
0 1

. . .
ka − 1 kaaDa :

Fig. 1. The discretization of real value attribute a ∈ A defined by the set of cuts
{(a, ca1), (a, ca2), . . . , (a, caka)}

It is obvious, that discretization process is associated with a loss of informa-
tion. Usually, the task of discretization is to determine a minimal set of cuts D
(with respect to inclusion) from a given decision table A such that, in spite of
losing information, the D-discretized table A|D still keeps some useful properties
of A. In the discretization method based on rough set and Boolean reasoning
approach, we are trying to keep the discernibility between objects.

Let A = (U,A ∪ {d}) be a given decision table and D be a set of cuts. We
say that

– D is consistent with A (or A-consistent) if ∂A = ∂A|D , where ∂A and ∂A|D
are generalized decisions of A and A|P. In other words, the set of cuts is
A-consistent iff for any two objects u, v ∈ U :

if (u, v are discerned by A) then (u, v are discerned by D).

– D is irreducible in A if D is A-consistent and D′ is not A-consistent for any
proper subset D′ ⊂ D.

– D is optimal in A if card (D) ≤ card (D′) for any A-consistent set of cuts
D′.

The problem of searching for optimal set of cuts (Optimal Discretization
Problem) has been explored in [39], [37], [38] and [41]. From computational
complexity point of view, the Optimal Discretization Problem appears to be
hard. We have the following theorem (see [39]):

Theorem 1. For a given decision table A and an integer k.

– The decision problem for checking if there exists an irreducible set of cuts
P in A such that card(P) < k (k−minimal partition problem) is NP -
complete.

– The problem of searching for an optimal set of cuts P in A (optimal par-
tition problem) is NP -hard.

Two sets of cuts D′, D are equivalent (denoted by D′≡AD, if and only
if A|D = A|D′ . The equivalence relation ≡A has finite number of equivalence
classes. In the sequel we will not distinguish between equivalent sets of cuts.
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4.2 Maximal Discernibility (MD) Heuristics

We below describe our heuristic for optimal discretization problem.
Let A = (U,A∪{d}) be a decision table. An arbitrary attribute a ∈ A defines

a sequence va1 < va2 < . . . < vana , where
{
va1 , v

a
2 , . . . , v

a
na

}
= {a(x) : x ∈ U} and

na ≤ n. Then the set of all possible cuts on a is denoted by

Ca =

{(
a,
va1 + va2

2

)
,

(
a,
va2 + va3

2

)
, . . . ,

(
a,
vana−1 + vana

2

)}
The set of possible cuts on all attributes is denoted by

CA =
⋃
a∈A

Ca

In [39] we have shown that any irreducible set of cuts of A is a relative
reduct of another decision table A1 built from A, where A1 = (U1, A1 ∪ {d1})
is defined as follows:

– U1 = {(x, y) ∈ U × U : d(x) 6= d(y)} ∪ {new}, where new /∈ U × U .

– d1 : U1 → {0, 1} is defined by d1(u) =

{
0 if u = new
1 otherwise

– A1 =
{
f(a,c) : (a, c) ∈ CA

}
is a set of all discriminators defined by initial set

of cuts from CA (see Equation (5)).

The algorithm based on Johnson’s strategy described in the previous section
is searching for a cut c ∈ A1 which discerns the largest number of pairs of
objects. Then we move the cut c from A1 to the resulting set of cuts P and
remove from U1 all pairs of objects discerned by c. Our algorithm is continued
until U1 = {new}. Now we present the details of our algorithm.

Algorithm 3: MD-discretization

Input: The consistent decision table A.
Output: The semi-minimal set of cuts D consistent with A.
Method:

D = ∅; CA = initial set of cuts on A;
L = {(x, y) ∈ U × U : d(x) 6= d(y)} ;
while (L 6= ∅) do
begin

Choose the cut cmax ∈ CA which discerns the largest number of
pairs of object in L. (i.e. the cut corresponding to the
column with largest number of ”1”)

Insert cmax into D and remove it from CA.
Remove all pairs of objects from L discerned by cmax

end

2
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A a b d

u1 1 2 1
u2 1.2 0.5 0
u3 1.3 3 0
u4 1.4 1 1
u5 1.4 2 0
u6 1.6 3 1
u7 1.3 1 1

r
b
r
r
b

b

b
cb1

cb2

cb3

ca1 ca2 ca3 ca4

a
1 1.2 1.4 1.6

3

2

1

0.5

b

-

6

Fig. 2. The decision table with two real value attributes and its geometric interpreta-
tion

A1 f(a,0.9) f(a,1.25) f(a,1.35) f(a,1.5) f(b,0.75) f(b,1.5) f(b,2.5) d1
(u1, u2) 1 0 0 0 1 1 0 1

(u1, u3) 1 1 0 0 0 0 1 1

(u1, u5) 1 1 1 0 0 0 0 1

(u4, u2) 0 1 1 0 1 0 0 1

(u4, u3) 0 0 1 0 0 1 1 1

(u4, u5) 0 0 0 0 0 1 0 1

(u6, u2) 0 1 1 1 1 1 1 1

(u6, u3) 0 0 1 1 0 0 0 1

(u6, u5) 0 0 0 1 0 0 1 1

(u7, u2) 0 1 0 0 1 0 0 1

(u7, u3) 0 0 0 0 0 1 1 1

(u7, u5) 0 0 1 0 0 1 0 1

new 0 0 0 0 0 0 0 0

Fig. 3. Table A1 constructed from table A

Example 1. We consider the decision table with two attributes and seven objects
(Figure 2).
The set of all cuts consists of four cuts on the attribute a and three cuts on the
attribute b.

CA = {(a, 0.9), (a, 1.25), (a, 1.35), (a, 1.5)} ∪ {(b, 0.75), (b, 1.5), (b, 2.5)}

The new decision table A1 consists of 7 attributes and 13 objects (Figure 3). The
MD–discretization algorithm chooses the cut (b, 1.5) first because it discerns 6
pairs of objects, than it chooses the cuts (a, 1.25) and (a, 1.5). The result of the
MD–discretization algorithm is the set of cuts D = {(a, 1.25), (a, 1.5), (b, 1.5)}.

Let n be a number of objects and k be a number of attributes of decision

table A, then card (A1) ≤ (n− 1) k and card (U1) ≤ n(n−1)
2 . It is easy to note

that for any cut c ∈ A1 we need O
(
n2
)

steps to find the number of all pairs of
objects discerned by c. Hence the straightforward realization of this algorithm
requires O

(
kn2

)
of memory space and O(kn3) steps to determine one cut, so it

is not useful in practice. The algorithm presented below determines the best cut
in O (kn) steps using O (kn) space only.
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At first we show that the number of pairs of objects discerned by a given
cut can be computed faster than O

(
n2
)
. For the given cut (a, c) ∈ CA on an

attribute a ∈ A and a given subset of objects X ⊆ U we introduce the following
notation:

1. WX (a, c) = number of pairs of objects from X discerned by (a, c);
2. for j = 1, ..., r:

lXj (a, c) = card {x ∈ X : [a (x) < c] ∧ [d (x) = j]} ; and

rXj (a, c) = card {x ∈ X : [a (x) > c] ∧ [d (x) = j]} ;

are numbers of objects from X belonging to the jth decision class and being
on the left-hand-side and right-hand-side of the cut (a, c) (correspondingly).

3. The number of objects on both sides of (a, c)
lX (a, c) =

∑r
j=1 l

X
j (a, c) = card {x ∈ X : a (x) < c} ;

rX(a, c) =
∑r
j=1 r

X
j (a, c) = card {x ∈ X : a (x) > cam} .

We obtain the following lemma:

Lemma 2. For any cut (a, c) ∈ CA, and X ⊆ U :

WX (a, c) = lX (a, c) · rX (a, c)−
r∑
i=1

lXi (a, c) · rXi (a, c)

This Lemma shows, that the number of pairs of objects discerned by a cut
(a, c) ∈ CA can be computed in O(n) time. The next theorem is showing that
if (a, cm) and (a, cm+1) are consecutive cuts on the attribute a, than the value
WX(a, cm+1) can be derived from WX(a, c) in O(1) time.

Theorem 3. If there is exactly one object x ∈ X ⊆ U such that cam < a (x) <
cam+1 and t = d (x) then:

1. lXj
(
cam+1

)
= lXj (cam) for j 6= t;

2. lXt
(
cam+1

)
= lXt (cam) + 1;

3. rXj
(
cam+1

)
= rXj (cam) for j 6= t;

4. rXt
(
cam+1

)
= rXt (cam)− 1;

5. WX
(
cam+1

)
= WX (cam) +

(
rX (cam)− lX (cam)

)
−
(
rXt (cam)− lXt (cam)

)
Proof: The proofs of (1.) - (4.) are obvious. From those equations it follows that

lX
(
cam+1

)
= lX (cam) + 1 and rX

(
cam+1

)
= rX (cam)− 1.

¿From Lemma 2 we have:

WX (cam) = lX (cam) rX (cam)−
r∑
i=1

lXi (cam) rXi (cam) ;

WX(cam+1) = lX(cam+1)rX(cam+1)−
r∑
1

lXi (cam+1)rXi (cam+1)
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So

WX
(
cam+1

)
−WX (cam) = lX

(
cam+1

)
rX
(
cam+1

)
− lX (cam) rX (cam) +

lXt (cam) rXt (cam)− lXt
(
cam+1

)
rXt
(
cam+1

)
=
[
lX (cam) + 1

]
·
[
rX (cam)− 1

]
− lX (cam) rX (cam) +

lXt (cam) rXt (cam)−
[
lXt (cam) + 1

]
·
[
rXt (cam)− 1

]
= [rX(cam)− lX(cam)]− [rXt (cam)− lXt (cam)].

2

Let us assume that the number WX (cam) of pairs of objects from X discerned
by the cut cam has been determined. Theorem 3 shows that we can compute the
value WX

(
cam+1

)
in time O (1). In the consequence the best cut on any attribute

can be determined in time O(n).
We propose two strategies of searching for semi-optimal set of cuts. The

first, called local strategy, after finding the best cut and dividing the object set
into two subsets of objects, repeats this procedure for each object set separately
until some stop condition holds. The quality of a cut (i.e. number of objects
discerned by cut) in local strategy is computed locally on a subset of objects. In
the second strategy, called global strategy, quality of cuts are computed on whole
set of objects. Usually, local strategy is easier for realization than the global one,
but the set of cuts obtained by global strategy is smaller.

4.3 Local strategy

The local strategy can be realized by using decision tree. A typical algorithm for
decision tree generation for a given decision table A = (U,A ∪ {d}) is described
below:

�
��a, c
�

�
�	

@
@
@R

�
�
�
� A

A
A
A �

�
�
� A

A
A
A

?

a(u) > ca(u) ≤ c

u

L R

Fig. 4. The decision tree used for local discretization

Algorithm 4: Local discretization

Input: The consistent decision table A.
Output: The semi-minimal set of cuts D consistent with A.
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Method:
Initialize the binary tree variable T with the empty tree.
Label the root by the set of all objects U and fix the status of the root to be

unready.
while there is a leaf marked by unready do
begin

for any unready leave N of the tree T
begin

if objects labeling N have the same decision value then
begin

Replace the object set at N by its common decision
Change the status of N to ready.

end
else
begin

Search for the best cut (a, c) for objects in N
Replace the label of N by (a, c)
Create two new nodes N1 and N2 (as the left and right subtrees of
N) with status unready, where

N1 = {u ∈ N : LHN
(u) < 0} and N2 = {u ∈ N : LHN

(u) ≥ 0}

end
end

end
return T

2

4.4 Global strategy

Now we describe some properties of the D-discretized table AD, where D ⊆ CA

is an arbitrary set of cuts. Assuming X1, X2, ..., Xm to be equivalence classes of
the discernibility relation IND (AD) of table A|D, one can note that the family
PART(D) = {X1, X2, ..., Xm} defines a partition of the set of objectsU into m
disjoint subsets i.e.

U = X1 ∪ ... ∪Xm and ∀i 6=jXi ∩Xj = ∅

In practice the classes X1, .., Xm are stored in memory instead of A|D. Observe
that objects from Xi (i = 1, ..,m) are not discerned by any cut from D. Hence
the number of pairs of objects discerned by cut c /∈ D but not discerned by cuts
from D is equal to

WD (a, c) = WX1 (a, c) +WX2 (a, c) + ...+WXm (a, c) . (6)

Let us consider the situation, when we have the set of cuts D defining the
equivalence classes X1, .., Xm and two consecutive cuts caj , c

a
j+1 on the attributes

a. We can derive the value WD

(
a, caj+1

)
from WD

(
a, caj

)
in time O(1) applying

the following theorem:
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Theorem 4. Let D be a given set of cuts. If there is exactly one object x ∈ U
such that a(x) ∈

(
caj , c

a
j+1

)
then:

WD

(
a, caj+1

)
−WD

(
a, caj

)
= WXi

(
a, caj+1

)
−WXi

(
a, caj

)
=

=
(
rXi

(
caj
)
− lXi

(
caj
))
−
(
rXit

(
caj
)
− lXit

(
caj
))

where t = d (x) and Xi ∈ PART(D) is the equivalence class containing x.

Proof: This fact follows from Theorem 3 and Equation 6. 2

Now we present the details of our algorithm.

Algorithm 5: Global discretization

Input:The consistent decision table A.
Output: The semi-minimal set of cuts P consistent with A.
Data Structure: D – the semi-minimal set of cuts; L = PART(D) – the

partition of U defined by D; CA – the set of all possible cuts on A.
Method:

1. D = ∅; L = {U} ; A1 = initial set of cuts on A
2. for c ∈ CA do compute (WD (c))
3. Choose cmax with the largest value WD (cmax) among cuts from A1 and

set

D = D∪{cmax} ; CA = CA\ {cmax}

4. for X ∈ L do

if X consists of objects from one decision class then remove X from
L;

if cmax divides the set X into X1, X2 then

– Remove X from L
– it Add to L two sets X1, X2

5. if L is empty then Stop else Go to 2.

2

Theorem 5. Algorithm 5 needs time of order O (kn(|P|+ log n)) and O(kn)
memory space for computing of the semi-minimal set of cuts P.

Proof: Step 1 takes O(kn log n) steps. From Theorem 4 it follows that Loop 2
and Loop 4 require together O (kn) memory space and O (kn) time. 2

Example 2. We illustrate the local and global strategy on the decision table pre-
sented on the Figure 5.

In both cases our algorithms begin with choosing the best cut (a3, 4.0) dis-
cerning 20 pairs of objects from A. The Theorem 3 assures that this cut can be
found in linear time.
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A a1 a2 a3 d

u1 1.0 2.0 3.0 0

u2 2.0 5.0 5.0 1

u3 3.0 7.0 1.0 2

u4 3.0 6.0 1.0 1

u5 4.0 6.0 3.0 0

u6 5.0 6.0 5.0 1

u7 6.0 1.0 8.0 2

u8 7.0 8.0 8.0 2

u9 7.0 1.0 1.0 0

u10 8.0 1.0 1.0 0

Attr. a3
-

1

u3ru4bu9

bu10

2 3

bu1

bu5

4 5

ru2

ru6

6 7 8

u7
u8

Attr. a2
-

1

u7bu9

bu10

2

bu1

3 4 5

ru2

6

ru4bu5

ru6

7

u3

8

u8

Attr. a1
-

1

bu1

2

ru2

3

u3ru4

4

bu5

5

ru6

6

u7

7

u8bu9

8

bu10? ? ? ? ? ? ?

? ? ? ? ?

? ? ? ?

Fig. 5. The exemplary decision table with 10 objects, 3 attributes and 3 decision classes
and the illustration of cuts for this table

u1, u9, u10

d = 0

u2, u6

d = 1

u7, u8

d = 2

a3 < 4.0

a2 < 3.5 a1 < 5.5

a1 < 3.5

a2 < 6.5

�� �

20 pairs

�� �

6 pairs

�� �

4 pairs

�� �

2 pairs

u5

d = 0

u4

d = 2

u3

d = 1

�� �


+ s

� U� U

R	

U�

Fig. 6. The construction of decision tree by applying local discretization algorithm

In the local strategy, the cut (a3, 4.0) divides the set of objects into two
subsets U1 = {u1, u3, u4, u5, u9, u10} and U2 = {u2, u6, u7, u8}. Then the local
discretization algorithm chooses the best cuts locally on U1 and U2. The cuts
(a1, 3.5), (a2, 3.5) and (a2, 5.5) are best cuts for U1 (because they are discerning
6 pairs of objects from U1); the cuts (a1, 5.5) and (a3, 7.0) are the best cuts for
U2 (4 pairs of objects from U2). Assume that the cuts (a2, 3.5) and (a1, 5.5) have
been chosen for U1 and U2, respectively. Hence U1 is divided into two subsets
X1 = {u1, u9, u10} and X2 = {u3, u4, u5}, but the set U2 is divided into two
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sets X3 = {u2, u6} and X4 = {u7, u8}. One can see that the sets X1, X3 and
X4 consists of objects from one decision class, then our algorithm continues
the searching process for X2. The result of our algorithm is the set of cuts
{(a3, 4.0), (a2, 3.5), (a1, 5.5), (a1, 3.5), (a2, 6.5)} (see Figure 6).

In the global strategy, the best cut (a3, 4.0) defines a partition L = {U1, U2} of
U , where U1 = {u1, u3, u4, u5, u9, u10} and U2 = {u2, u6, u7, u8}. Next, the global
discretization algorithm chooses the cut (a1, 3.5) because it discerns 8 pairs of
objects (6 pairs in U1 and 2 pairs in U2). The set of two cuts {(a3, 4.0), (a1, 3.5)}
defines a new partition L = {{u1, u3, u4}, {u5, u9, u10}, {u2}, {u6, u7, u8}}. After
removing two sets {u5, u9, u10}, {u2}, which consists of objects from one de-
cision class, the algorithm chooses the cut (a2, 3.5) (3 pairs). The set of cuts
{(a3, 4.0), (a1, 3.5), (a2, 3.5)} defines a partition L = {{u1}, {u3, u4}, {u6, u8},
{u7}}. Finally, the algorithm chooses the cut (a2, 6.5), which discerns all remain-
ing pairs of objects. As the result we have the set of cuts {(a3, 4.0), (a1, 3.5),
(a2, 3.5), (a2, 6.5)}.

4.5 Application of dynamic reducts to finding set of cuts

Now, we propose another method of searching for an irreducible set of cuts of
a given decision table A1 = (U1, A1 ∪ {d1}) (see Section 4.2). This method is
based on the dynamic reduct notion (see Section 7, 8). We calculate dynamic
reducts (or generalized dynamic reducts) for the table A1 and we choose one
with the best stability coefficient. Next, as an irreducible set of cuts we select
cuts belonging to the chosen dynamic reduct. Finally, we remove from U1 and
respectively U all objects not belonging to the reduct domain (see Section 9) of
the chosen dynamic reduct.

5 Local reducts computation

A notion of local reduct (see Section 2 and [65]) seems to be very useful in
classification problems. A set of rules generated basing on these reducts is usually
less specific and fits more new (unseen) objects than in a classical case.

Let A = (U,A ∪ {d}) be an information system, where U - set of objects, A
- set of attributes, d - decision. A rule generated by a local reduct is concerned
with the base object and may not recognize any other object from U . To assure
that a set of rules will recognize (at least) all objects from the training set, we
have to generate a local reduct for every object. A simple algorithm checking
whether a subset is a local superreduct works at a time complexity of O(mn):
we have to compare our base object with all other objects and check whether
condition a) (see local reduct definition) holds. It takes O(mn2) time to check
this property for all objects (in case we are looking for a local reduct for every
object), where n = number of objects, m = number of attributes.

An algorithm presented below realizes the following objective: assuming that
the information system A is consistent, find a family of subsets R1, R2,. . . Rk
such that for any object xi from U at least one Rj is a local reduct (we will say,
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that Rj covers xi). We look for possibly small family R1,. . . Rk, i.e. we prefer
these subsets which cover possibly many objects. We assume, that these subsets
reflect regularities in data and generate more general rules and that fact means
better classification of new samples and less memory required to store rules.

Algorithm 6 Optimal covering with local reducts.
Input: decision table A = (U, {a1, ..., am} ∪ {d})
Output: a set R of local reducts covering U
Method:

N = {N1, . . . , Nn} = 0, . . . , 0 – numbers of local reducts found for each object
repeat
R = {a1, . . . , am}
repeat

b = {b1, . . . , bn} = 0, . . . , 0
c = {c1, . . . , cn} = 0, . . . , 0 – tables of (locally) covered objects
LocRed (A, R, c,N) – check which objects are covered by R
for ai ∈ R do
begin

R = R− ai
Mi = LocRed (A, R, b,N) – number of objects covered by R
R = R ∪ ai

end
for i = 0 to n if ci = 1 and bi = 0 then
begin

R = R ∪R(ui) – update set of reducts
Ni = 1

end
j = arg max(Mi) – if there is more than one maximum, select random
R = R− aj

until R = ∅
until ∀i∈{1,...,m} Ni = 1
return R

2

Lemma. The algorithm described above generates a covering for all objects
in at most n = |U | cycles of the outer loop.

Proof: see [65].
The algorithm is not deterministic, because we use a random selection of

maximal Mi. We need to have a method of determining whether a subset is a
local superreduct to complete our algorithm. Function LocRed checks for which
objects a subset R is local reduct and returns a number of these objects as well
as a list of them (in the form of binary table):

Algorithm 7. Function LocRed(A, R, b,N).

Input:
1. Decision table A = (U,A ∪ {d})
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2. Subset R ⊆ A
3. Table of already covered objects N

Output:
1. Table b of objects for which R is a local superreduct
2. Number of newly covered objects

Method:
Sort U by values of attributes in R
Create partition U = U1 ∪ . . . ∪ Uk into indiscernibility classes,

i.e. u1, u2 ∈ Ui ⇒ (u1, u2) ∈ IND (R)
newcover = 0
for i = 1 to k do
begin
uniform = 1
for j = 2 to |Ui| do
begin

if d(ui,j) 6= d(ui,j−1) then uniform = 0
– where Ui = {ui,1, . . . , ui,|Ui|}

end
if uniform = 1 then
begin

for j = 1 to |Ui| do
begin

t = a number of object ui,j in table U
bt = 1
if Nt = 0 then newcover = newcover + 1

end
end

end
return newcover

2

The partition of U can be done by n operations if U is properly sorted.
Since we may use a fast method of sorting, our algorithm has the complexity of
mn log (n), where n = number of objects, m = number of attributes.

6 Computing reducts using Genetic Algorithms

Our methods of decision rules generation from decision tables are based on the
reduct set computation. The time cost of the reduct set computation can be
too high in case the decision table consists of too many: objects or attributes or
different values of attributes. The reason is that in general the size of the reduct
set can be exponential with respect to the size of the decision table and the
problem of computing a minimal reduct is NP-hard (see [51]). Therefore we are
often forced to apply approximation algorithms to obtain some knowledge about
the reduct set. One way is to use approximation algorithms that do not give the
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optimal solutions but require short computing time. Among these algorithms are
the following ones: Johnson’s algorithm, algorithms based on simulated anneal-
ing and Boltzmann machines, algorithms using neural networks and algorithms
based on genetic algorithms, which we would like to present in this section.

6.1 Genetic and hybrid algorithms

The main idea of genetic algorithms is based on the Darwinian principle of “sur-
vival of the fittest” (natural selection). In a case of classical genetic algorithms
(see [21], [24]) we are given a state space S (finite, but large) and a function:
f : S → R+. Our goal is to find xo: f(xo) = max{f(x): x ∈ S}. Elements of set
S are “individuals”. We treat a value of the function f as ability to survive in
the environment (“fitness”), and we simulate the process of evolution as follows:

1. We choose the representation scheme: a mapping from a space of “individu-
als” into “chromosomes” - usually bit strings.

2. We randomly choose the set of chromosomes as an initial population.
3. We calculate “fitness” F (c) of each chromosome c as a value of f(s(c)),

where s(c) is the individual encoded by c. Then we create a new population,
replacing the chromosomes with low fitness by those with higher fitness.

4. We randomly affect the new population by genetic operators, e.g. mutation
(small, random modifications of chromosomes) and crossing-over (exchange
of “genetic material” between some pairs of chromosomes).

5. We repeat 3-4 with the new population, until a stopping criterion is satisfied.

The result of evolution is the best individual xmax which is usually nearly as
good as the global optimum xo.

The scheme presented above is general and domain-independent. On the
other hand, in particular problems we often have some approximation algorithms
and heuristics producing maybe not optimal, but good results. To exploit ad-
vantages of both genetic and heuristic algorithms, one can use a hybridization
strategy [64]. The general scheme of hybrid algorithm is as follows:

1. Find a strategy (heuristic algorithm) which gives an approximate result.
2. Modify (parameterize) the strategy using a control sequence, so that the

result depends on this sequence (recipe).
3. Encode the control sequence to a chromosome.
4. Use a genetic algorithm to produce control sequences. Proceed with the

heuristic algorithm controlled by the sequence. Evaluate an object generated
by the algorithm and use its quality measure as a fitness of the control
sequence.

5. A result of evolution is the best control sequence, i.e. the sequence producing
the best object. Send this object to the output of the hybrid algorithm.

Hybrid algorithms proved to be useful and efficient in many areas, including
NP-hard problems of combinatorics. As we will see in the next section, short
reduct finding problem also can be solved efficiently by this class of algorithms.
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6.2 Finding reducts using GA

An order-based genetic algorithm is one of the most widely used component of
various hybrid systems. Theoretical foundations and practical construction of
this algorithm are presented in [64]. In this type of genetic algorithm a chro-
mosome is an n-element permutation σ, represented by a sequence of numbers:
σ(1) σ(2) σ(3) . . . σ(n). Mutation of order-based individual means one random
transposition of its genes (a transposition of random pair of genes). There are
various methods of recombination (crossing-over) considered in literature. In [21]
such methods as PMX (Partially Matched Crossover), CX (Cycle Crossover) and
OX (Order Crossover) are described. Another type of crossing-over operator is
presented in [63]. After crossing-over, fitness function of every individual is calcu-
lated. In the case of a hybrid algorithm a heuristic part is launched under control
of individual; a fitness value depends on the result of heuristic algorithm. Then,
new population is generated using “roulette wheel” algorithm: the fitness value
of every individual is normalized and treated as probability distribution on pop-
ulation; then we randomly choose M new individuals using this distribution.
Then all these steps are repeated.

In the hybrid algorithm [62] a simple, deterministic method was used for
reduct generation:

Algorithm 8. Finding a reduct basing on permutation.
Input:

1. decision table A = (U, {a1, ..., an} ∪ {d})
2. permutation τ generated by genetic algorithm

Output: a reduct R generated basing on permutation τ
Method:

R = {a1, ..., an}
(b1 . . . bn) = τ (a1 . . . an)
for i = 1 to n do
begin
R = R− bi
if not Reduct(R,A) then R = R ∪ bi

end
return R

2

A fast algorithm of determining whether R is superreduct is presented in
[40]:

Algorithm 9. Function Reduct(R,A).

Input:
1. Decision table A = (U,A ∪ {d})
2. Subset R ⊆ A
3. Binary tree Tred of reducts found so far, list Lsubred of subreducts found so far.

Output:
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1. “True” if R is a reduct or superreduct of A, “False” otherwise.
2. Updated Tred and Lsubred structures.

Method:
if R ∈ Tred then return True
for s ∈ Lsubred do
begin

if R ⊆ s return False
end
Sort U by values of attributes in R
for i = 2 to m do
begin

if d(ui) 6= d(ui−1) then
begin

all equal = 1
for aj ∈ R do
begin

if aj(ui) 6= aj(ui−1) then all equal = 0
end
if all equal = 1 then
begin

Add(Lsubred, R)
return False

end
end

end
Add(Tred, R)
return True

2

The result of the algorithm will always be a reduct. Every reduct can be
found using this algorithm, the result depends on the order of attributes (proof:
see [62]). The genetic algorithm is used to generate the proper order. To calculate
the function of fitness for a given permutation (order of attributes) we have to
perform one run of the deterministic algorithm and calculate the length of the
found reduct. In the selection phase of genetic algorithm we used linear scaling
[21] and the following fitness function:

F (τ) = n− Lτ + 1

The hybrid algorithm described above performs much slower that the classical
genetic algorithm. On the other hand, the reducts obtained by this algorithm
are usually shorter. Moreover, the hybrid algorithm generates from 50 to 500
different reducts in comparison with 5 to 50 reducts generated by the classical
GA at the same time.

An algorithm described above generates possibly shortest reducts, i.e. the
reducts with as few attributes as possible. On the other hand, our goal is not to
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calculate reducts, but to construct an efficient system for classification or decision
making. Another approach is to select a reduct due to the number of rules it
generates rather than to its length. Every reduct generates an indiscernibility
relation on the universe and in most cases it identifies some pairs of objects. If
a reduct generates less rules, it means, that the rules are more general and they
should better recognize new objects.

The number of rules can be easily computed due to the improvement of
the reduct generation system described in [40]. The hybrid algorithm described
above can be used to find reducts generating the minimal number of rules. The
only thing we have to change is the definition of fitness function:

F (τ) = m−Rτ +
n− Lτ + 1

n

where Rτ denotes the number of rules generated by the reduct. Now, the
primary criterion of optimization is the number of rules, while the secondary is
the reduct length. The results of experiments [64] show, that the classification
system based on the reducts optimized due to the number of rules performs
better (or not worse) than the short reduct based one. Moreover, due to the rule
set reduction, it occupies less memory and classifies new objects faster.

7 Dynamic Reducts

The methods based on calculation of reducts allow to compute, for a given
decision table A, the descriptions of all decision classes of A in the form of
decision rules (see previous sections). Unfortunately, the decision rules calculated
in this way can often be inappropriate to classify unseen cases. We suggest that
the rules calculated by means of dynamic reducts are better predisposed to
classify unseen cases, because these reducts are the most stable reducts in a
process of random sampling of the original decision table.

Let A = (U,A ∪ {d}) be a decision table. By P(A) we denote the set of all
subtables of A. If F ⊆ P(A) then by DR(A,F) we denote the set

RED(A, d) ∩
⋂
B∈F

RED(B, d).

Any element of DR(A,F) is called an F-dynamic reduct of A.
¿From the definition of dynamic reduct it follows that a relative reduct of

A is dynamic if it is also a reduct of all subtables from a given family F. This
notion can be sometimes too much restrictive so we apply also a generalization of
dynamic reducts - (F, ε)-dynamic reducts, where ε ∈ [0, 1]. The set DRε(A,F),
of all (F, ε)-dynamic reducts is defined by
DRε(A,F) = {C ∈ RED(A, d) :

card({B ∈ F : C ∈ RED(B, d)})
card(F)

≥ 1− ε}
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If C ∈ RED(A, d) then the number:

card({B ∈ F : C ∈ RED(B, d)})
card(F)

is called the stability coefficient of the reduct C (relative to F).

Proposition 6. Let A = (U,A ∪ {d}) be a decision table.

1. If F = {A} then DR(A,F) = RED(A, d).
2. If ε1 ≤ ε2 then DRε1(A,F) ⊆ DRε2(A,F).
3. DR(A,F) ⊆ DRε(A,F), for any ε ∈ [0, 1].
4. DR0(A,F) = DR(A,F).

8 Generalized Dynamic Reducts

¿From the definition of dynamic reduct it follows that a relative reduct of any
table from a given family F of subtables of A can be dynamic if it is also a
reduct of table A. This notion can be sometimes not convenient because we are
interested in useful sets of attributes which are not necessarily reducts of the
table A. Therefore we have to generalize the notion of a dynamic reduct.

Let A = (U,A∪ {d}) be a decision table and F ⊆ P(A). By GDR(A,F) we
denote the set ⋂

B∈F

RED(B, d).

Elements of GDR(A,F) are called F-generalized dynamic reducts of A.
¿From the above definition it follows that any subset of A is a generalized

dynamic reduct if it is also a reduct of all subtables from a given family F.
Analogously to dynamic reducts we define a more general notion of generalized
dynamic reducts - (F, ε)-generalized dynamic reducts, where ε ∈ [0, 1]. The set
GDRε(A,F) of all (F, ε)-generalized dynamic reducts is defined by
GDRε(A,F) = {C ⊆ A :

card({B ∈ F : C ∈ RED(B, d)})
card(F)

≥ 1− ε}.

If C ∈ RED(B, d) (for any B ∈ F) then the number:

card({B ∈ F : C ∈ RED(B, d)})
card(F)

is called the stability coefficient of the generalized dynamic reduct C (relative to
F).

Proposition 7. Let A = (U,A ∪ {d}) be a decision table.

1. DR(A,F) ⊆ GDR(A,F).
2. DRε(A,F) ⊆ GDRε(A,F) for any ε ∈ [0, 1].
3. If A ∈ F then DR(A,F) = GDR(A,F).
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9 Reduct Domain

Let A = (U,A ∪ {d}) be a decision table, F ⊆ P(A), and let GDRε(A,F) (for
any ε ∈ [0, 1]) be the set of (F, ε)-generalized dynamic reducts.

For anyR ∈ GDRε(A,F) we define the reduct domain (denoted byRD(A,F, R))
as the set:⋃

{UB : R ∈ RED(B, d) and B = (UB, A ∪ {d}) ∈ F} ∩ POSR(d).

The domain of the reduct R is the set of all objects belonging to decision
tables B ∈ F satisfying R ∈ RED(B, d) on which the decision can be uniquely
determined by attributes from R.

The notion of a reduct domain is very important for decision rules generation
(see Section 12).

10 Statistical Inference about Dynamic Reducts

Statistics is frequently defined as the science of collecting and studying numerical
data in which deductions are made on the assumption that the relationships
between a sufficient sample of numerical data are characteristic of those between
all such data (see [12], [18], [25]). The data in most statistical problems relate to
a sample drawn from some parent population or universe (as it is called in rough
set theory). When a sample is used to make inferences about the population,
we generally assume that the sample is random. This usually means (when the
population is finite) that any individual in the population has an equal chance
of being included in the sample. It is desirable that sampling should be as nearly
random as possible, although this is often difficult to be achieved in practice,
because sometimes we do not have equal access to all elements of the universe.
This problem can be described in language of rough set theory. If we want to
calculate the set of decision rules based on a given decision table, we would like
to construct rules which are proper not only for objects from this decision table
but also for still unknown examples of objects. The dynamic reducts (defined
in the previous sections) are calculated with respect to a family F of subtables
created by random samples of a given decision table. The family F is, of course,
only a subfamily of all subtables of the hypothetical universal decision table
(including known and unknown objects describing a currently considered aspect
of reality). The family of all subtables of the universal decision table is denoted
by G. We are interesting in reducts which most frequently appear in the family
G, because we expect that the decision rules generated from these reducts are
better predisposed to designate a value of the decision for objects from the
universal decision table W. In another words, we are interested in the probability
of the event that a given F-generalized dynamic reduct R is a reduct for any
subtable from G. This probability is denoted by PG(R) and defined as the

quotient card(GR)
card(G) , where

GR = {B ∈ G : R ∈ RED(B, d)}. (7)
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We would like to select an F-dynamic reduct R for which the probability
PG(R) is not less than the probability PG for other dynamic reducts. However
we cannot calculate PG for any F-generalized dynamic reduct R because we do
not know the whole family G. In this section we show that the so called stability
coefficient of any (F, ε)-generalized dynamic reduct R is a proper measure of
the probability PG(R). Unfortunately, we usually do not have an access to all
subtables from the family G, therefore we construct the family F based only on
subtables of a given decision table A. We have to assume that the decision table
A is a representative sample from the universal decision table W.

Theorem 8. Stability coefficients as maximum likelihood estimator (see [6])

Let us assume that

• W = (W,A ∪ {d}) is a universal decision table,

• A = (U,A ∪ {d}) is a given decision table (U ⊆W ),

• G = P(W) is a family, called the parent population,

• F ⊆ P(A),

• R is an (F, ε)-generalized dynamic reduct for some ε ∈ [0, 1].

Then we have: the stability coefficient of the (F, ε)-generalized dynamic reduct
R of the decision table A is the maximum likelihood estimator of the probability
PG(R) (see [25]).

The maximum likelihood estimator of the probability PG(R) is denoted by
MLE(PG(R)).

Proof: Let us first introduce the simple binomial distribution XR
G(B) : G →

{0, 1} (for the family G and the reduct R) defined for any B ∈ G:

XR
G(B) =

{
1 for R ∈ RED(B, d)(success)
0 for R /∈ RED(B, d)(defeat)

(8)

Let G1 = {B ∈ G : XR
G(B) = 1} and G0 = {B ∈ G : XR

G(B) = 0}. Now it is
easy to observe that the probability P of the success in our binomial distribution
is: P [XR

G(B) = 1] = PG(R) and the probability of the defeat in our binomial
distribution is: P [XR

G(B) = 0] = 1− PG(R).

¿From [25] we know that the probability of a success in our distribution
XR

G may be estimated by taking a sample of subtables from the family G (for
example F) and next using the method of maximum likelihood estimator. The
maximum likelihood estimator of success probability in our distribution is the
arithmetic mean of values XR

G for all subtables from the sample (see for instance
[25]).

Hence:

MLE(PG(R)) =

∑
B∈F

XR
G(B)

card(F)
=
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=

∑
B∈F∩G1

XR
G(B) +

∑
B∈F∩G0

XR
G(B)

card(F)
=
card(F ∩G1)

card(F)
. (9)

¿From our definition of F-generalized dynamic reducts (Section 8) we con-

clude that the number card(F∩G1)
card(F) is equal to the stability coefficient of the

generalized dynamic reduct R.
This completes the proof.

ut
Remark 1. Dynamic reducts as the tools for classification
Theorem 8 is showing that dynamic reducts with large stability coefficients are
”good” candidates for decision rules generation. They allow to construct rules
with better classification quality of unseen objects than reducts with smaller
stability coefficients.

Remark 2. Minimal size of family F
It is easy to observe (see the proof of Theorem 8) that for any dynamic reduct
R the problem of calculating the stability coefficient of R is equivalent to the
problem of calculating an unknown success probability PG(R) in binomial dis-
tribution XR

G. Therefore, the maximum likelihood estimator of the probability

PG(R) is equal to card(F∩G1)
card(F) . For calculating the necessary size of family F,

we need to make some assumption about a confidence coefficient: 1 − α. The
confidence coefficient can be understood as a measure of probability estimation
correctness (see for instance [18]). ¿From the Moivre-Laplace theorem (see for
instance [18] - Theorem 6.7.1) we know that

MLE(PG(R))− PG(R)√
MLE(PG(R))·(1−MLE(PG(R)))

card(F)

(10)

has approximately a standard normal distribution. Hence,

P

−tα < MLE(PG(R))− PG(R)√
MLE(PG(R))·(1−MLE(PG(R)))

card(F)

< tα

 = 1− α, (11)

where the number tα is satisfying the equation:

1− α =

√
2

π

∫ tα

−tα
exp(− t

2

2
)dt. (12)

¿From equation (11) we have

P

[
MLE(PG(R)− tα ·

√
MLE(PG(R)) · (1−MLE(PG(R)))

card(F)
< PG(R) <
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MLE(PG(R) + tα ·

√
MLE(PG(R)) · (1−MLE(PG(R)))

card(F)

]
= 1− α. (13)

Hence, the 100 · (1− α)% confidence interval for PG(R) is given by

MLE(PG(R))− tα ·

√
MLE(PG(R)) · (1−MLE(PG(R)))

card(F)
< PG(R) <

MLE(PG(R)) + tα ·

√
MLE(PG(R)) · (1−MLE(PG(R)))

card(F)
. (14)

If∆MLE(PG(R)) is a maximal acceptable estimation error ofMLE(PG(R)),
then we conclude from inequality (14) that

tα ·

√
PG(R) · (1− PG(R))

card(F)
≤ ∆MLE(PG(R)). (15)

Hence

card(F) ≥ t2α · PG(R) · (1− PG(R))

(∆MLE(PG(R)))2
. (16)

It is easy to observe that if PG(R) = 1
2 then the product PG(R) ·(1−PG(R))

takes the maximum value of 1
4 . Therefore it is enough to require that the size of

F is no less than tα
2

4·(∆MLE(PG(R)))2
.

The value of tα one can read from the table of standardized normal distribu-
tion function (see e.g. [12], [25]).

For example, if we take 1 − α = 0.9 and ∆MLE(PG(R)) = 0.05 than the

value tα is 1.64 and card(F) ≥ 1.642

4·0.052 = 268.96.

11 Techniques for Dynamic Reduct Computation

In this section we present a method for computing generalized dynamic reducts
and reduct domains. In our method a random set of subtables F from a given data
table A = (U,A∪{d}) is taken and reducts for all these tables are calculated. The
number of samples card(F) can be selected by taking into account the minimal
family size (see previous section). The method of the random choice of sub-table
consists of the two steps. In the first step we randomly choose some numbers
with the probability:

P (k) =

(
n
k

)
n∑
i=1

(
n
i

) (17)
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where k = 1, ..., n and n = card(U). Next, we randomly choose a sub-table of A
consisting of k objects.

Thus we receive a family F of decision tables and for each A ∈ F we compute
reducts. Next step is to compute the reduct domain for every reduct (as the
positive region of the table constructed from the sum of all objects from proper
subtables). In the following step reducts with the stability coefficients higher
than a fixed threshold are extracted. The reducts distinguished in such a way
are treated as the true generalized dynamic reducts of the table A together with
their reduct domains.

We would like to mention another method of dynamic reduct computation
for decision tables. In this case we assume that the reduct set RED(A) is already
computed. Instead of computing reduct sets for subtables from F it is enough to
check which reducts from RED(A) are also reducts for subtables from F. This
can save computing time because time necessary for checking which reducts from
RED(A) are F-dynamic reducts of A is polynomial with respect to the size of
F and RED(A). However this method can be used only in case we are able to
compute the set of all reducts.

12 Decision Rules Computed from Dynamic Reducts

After a set of dynamic reducts with their reduct domains has been computed it is
necessary to decide how to compute the set of decision rules. We discuss methods
based on the decision rule set calculation for any chosen dynamic reduct. The
rules for each reduct are calculated separately. For example one can calculate
decision rules for any chosen dynamic reduct R. Let us consider the two following
methods.

In the first method for any object from the reduct domain R we take the
value vector of conditional attributes from R and the corresponding decision of
the object. Unfortunately, the decision rules generated by this method have poor
performance, because the number of objects supporting such rules is usually very
small.

In the second method we generate decision rules with minimal number of
descriptors (see Section 3) for the table consisting of the object set equal to the
reduct domain of R, the conditional attribute set equal to R, and assuming the
decision attribute to be the same as in the original decision table. The final
decision rule set is equal to the union of all these sets.

If a new object is to be classified it is first matched against all decision rules
from the constructed decision rule set. Next the final decision is predicted by
applying some strategy constructing the final decision from all ”votes” of decision
rules (see Section 15).

13 Dynamic Rules

¿From [3] and [4] we know that the quality of unseen object classification based
on dynamic reducts (see Section 12) is usually better than the quality of classi-
fication based on the whole set of attributes. Therefore one can adopt an idea of
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dynamic reducts as a method for decision rules computation. By analogy with
dynamic reducts, we propose the following method for dynamic rules compu-
tation. At the beginning, from a given data table a random set of subtables is
chosen. Next the optimal decision rule sets for all these tables are calculated. In
the following step the rule memory is constructed where all rule sets are stored.
Intuitively, any dynamic rule is appearing in all (or almost all) of experimental
subtables. The decision rules can be computed from the so called k-relative dis-
cernibility matrix used to generate decision rules with the minimal number of
descriptors (see Section 3).

Let A = (U,A ∪ {d}) be a decision table and F ⊆ P(A). A decision rule
r ∈

⋃
B∈F

RUL(B) is called an F-dynamic rule of A iff

SuppB(r) 6= 0⇒ r ∈ RUL(B), for any B ∈ F.

By DRUL(A,F) we denote the set of all F-dynamic rules of A.
¿From the definition of dynamic rules it follows that any optimal decision

rule for B ∈ F is an F-dynamic rule of A if it is also an optimal rule for all
subtables from a given family F (having some objects matched by the consid-
ered decision rule). This notion can be sometimes too much restrictive, so we
apply also a more general notion of a dynamic rule - (F, ε)-dynamic rules, where
ε ∈ [0, 1]. The set DRULε(A,F) of all (F, ε)-dynamic rules is defined as

DRULε(A,F) = {r ∈
⋃
B∈F

RUL(B) :
card({B ∈ F : r ∈ RUL(B)})
card({B ∈ F : SuppB(r) 6= 0})

≥ 1− ε}.

If r ∈ RUL(B) (for any B ∈ F) then the number:

card({B ∈ F : r ∈ RUL(B)})
card({B ∈ F : SuppB(r) 6= 0})

is called the stability coefficient of the dynamic rule r (relatively to F) and it is
denoted SCF

A(r).

Proposition 9. Let A = (U,A ∪ {d}) be a decision table.

1. If F = {A} then DRUL(A,F) = RUL(A).
2. If ε1 ≤ ε2 then DRULε1(A,F) ⊆ DRULε2(A,F).
3. DRUL(A,F) ⊆ DRULε(A,F), for any ε ≥ 0.
4. DRUL0(A,F) = DRUL(A,F).

Our methods for dynamic rules generation from decision tables are based
on the reduct set computation. A random set of subtables from a given data
table is taken (see Section 11) and the optimal rules for all these tables are
calculated (see Section 3). The time cost of the reduct set computation can be
very high when the decision table has too many: objects or attributes or different
values of attributes (see Section 3). Therefore we often apply some approximate
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algorithms to obtain knowledge about optimal rule sets (see Section 12, 15, [38],
[62]) and next we use the following proposition to compute stability coefficient
of calculated decision rules.

Proposition 10. Let us assume that

• A = (U,A∪{d}) is the decision table, where card(U) = n and card(A) = m,
• r = ((a1 = v1) ∧ ... ∧ (al = vl) ⇒ (d = vd)) ∈ DRULε(A,P(A)) for some
ε ∈ [0, 1] , where ai ∈ A, vi ∈ Vai for i = 1, ..., l (l ≤ m) and vd ∈ Vd,
• h−1 = card(H−1), where H−1 = {u ∈ U : ∀i ∈ {1, ..., l} : ai(u) = vi ∧
d(u) 6= vd},
• h0 = card(H0), where H0 = {u ∈ U : ∀i ∈ {1, ..., l} : ai(u) = vi ∧ d(u) =
vd},
• hi = card(Hi), where Hi = {u ∈ U : ∀j ∈ {1, ..., l} \ {i} : aj(u) = vj ∧
ai(u) 6= vi ∧ d(u) 6= vd} for i = 1, ..., l.

Then we have: the stability coefficient of the (P(A), ε)-dynamic rule r of the
decision table A can be computed using the following equation:

SC
P(A)
A (r) =

1

2h−1
for l = 1, (18)

and by

SC
P(A)
A (r) =

l∏
i=1

(
2hi − 1

)
2
h−1+

l∑
i=1

hi

for l > 1. (19)

One can prove the above proposition using some basic facts from combinatorics
and rough set theory.

It is easy to construct an algorithm, based on the equation (18) and (19),

calculating the stability coefficient SC
P(A)
A (r) for the rule r in time O(m ·n) and

space O(C), where C is a constant.

14 Approximate Rules

One can use approximate decision rules instead of optimal decision rules to
construct the classification algorithm for a decision table A (see Section 3). We
have implemented a method for computing approximate rules. We begin with
algorithm for synthesis of optimal decision rules from a given decision table (see
Section 3). Next, we compute approximate rules from already calculated optimal
decision rules. Our method is based on the notion of consistency of decision rule.
The original optimal rule is reduced to an approximate rule with coefficient of
consistency exceeding a fixed threshold.

Let A = (U,A∪{d}) be a decision table and r0 ∈ RUL(A). The approximate
rule (based on rule r0) is computed using the following algorithm.
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Algorithm 10 Approximate rule synthesis (by descriptor dropping)

Input:
1. decision table A = (U,A ∪ {d}),
2. decision rule r0 ∈ RUL(A),
3. threshold of consistency µ0 (e.g. µ0 = 0.9).

Output: the approximate rule rapp (based on rule r0).
Method:

Calculate the coefficient of consistency µA(r0)
if µA(r0) < µ0 then STOP (in this case no approximate rule).
µmax = µA(r0) and rapp = r0.
while µmax > µ0 do
begin
µmax = 0
for i = 1 to the number of descriptors from Pred(rapp) do
begin

r = rapp.
Remove i-th descriptor from Pred(r).
Calculate the coefficient of consistency µA(r) and µ = µA(r).
if µ > µmax then µmax = µ and imax = i.

end
if µmax > µ0 then remove imax -th conditional descriptor from rapp.

end
return rapp.

2

It is easy to see that the time and space complexity of Algorithm 10 are of
order O(l2 ·m · n) and O(C), respectively (where l is the number of conditional
descriptors in the original optimal decision rule r0 and C is a constant).

The approximate rules, generated by the above method, can help to extract
interesting laws from decision table. By applying approximate rules instead of
optimal rules one can slightly decrease the quality of classification of objects
from the training set but we expect in return to receive more general rules with
the higher quality of classification for new objects (see [9]).

15 Negotiations among Rules

Suppose we have a set of decision rules. In most cases it is necessary to decide
how to resolve conflicts between sets of rules classifying tested objects to different
decision classes. In this section we present several methods for constructing the
measure called a strength of rule set. The strength of rule set is a rational number
belonging to [0,1] representing the importance of the sets of decision rules relative
to the considered tested object.

Let us assume that:

• W = (W,A ∪ {d}) is a universal decision table,
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• A = (U,A ∪ {d}) is a given decision table (U ⊆W ),
• ut ∈W is a tested object,
• Rul(Xj) is a set of all calculated basic decision rules for A, classifying objects

to the decision class Xj (where vjd ∈ Vd)
• MRul(Xj , ut) ⊆ Rul(Xj) is a set of all decision rules from Rul(Xj) matching

tested objects ut.

We define several measures for the rule set MRul(Xj , ut) depending on the
number of rules from this set matching tested object, the number of objects
supporting decision rules from this set and the stability coefficient of rules.

1. A simple strength of decision rule set is defined by

SimpleStrength(Xj , ut) =
card(MRul(Xj , ut))

card(Rul(Xj))
. (20)

2. A maximal strength of decision rule set is defined by

MaximalStrength(Xj , ut) = maxr∈MRul(Xj ,ut)

{
SuppA(r)

card(|d = vjd|A)

}
. (21)

3. A basic strength of decision rule set is defined by

BasicStrength(Xj , ut) =

∑
r∈MRul(Xj ,ut)

SuppA(r)∑
r∈Rul(Xj)

SuppA(r)
. (22)

4. A global strength of decision rule set is defined by

GlobalStrength(Xj , ut) =

card

( ⋃
r∈MRul(Xj ,ut)

|Pred(r)|A ∩ |d = vjd|A

)
card(|d = vjd|A)

.

(23)
5. A stability strength of decision rule set is defined by

StabilityStrength(Xj , ut) = maxr∈MRul(Xj ,ut){SC
P(A)
A (r)}. (24)

6. A maximal stability strength of decision rule set is defined by

MaximalStabStrength(Xj , ut) = maxr∈MRul(Xj ,ut)
SuppA(r)

card(|d = vjd|A)
·SCP(A)

A (r).

(25)
7. A basic stability strength of decision rule set is defined by

BasicStabStrength(Xj , ut) =

∑
r∈MRul(Xj ,ut)

SuppA(r) · SCP(A)
A (r)∑

r∈Rul(Xj)
SuppA(r) · SCP(A)

A (r)
. (26)
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8. A global stability strength of decision rule set (denoted GlobStabS) is defined
inductively by

GlobStabS({r}) = SC
P(A)
A (r), for r ∈MRul(Xj , ut)

GlobStabS(R \ {r} ∪ {r}) =
= GlobStabS({r}) +GlobStabS(R \ {r})−

GlobStabS({r}) ·GlobStabS(R\{r}),
for R 6= ∅ and R ⊆MRul(Xj , ut).

(27)

The maximal strength of decision rule set is similar to strength of rule pre-
sented in [31] and [57]. The basic strength of decision rule set is similar to
strength of rule presented in [22] and [23]. The global strength of decision rule
set is similar to strength of rule presented in [31], [22] and [23]. Measure of
strengths of rules defined above can be applied in constructing classification
algorithms (see next section).

16 General Scheme of Classification Algorithm

In this section we present general scheme of classification algorithms based on
methods and techniques described in previous sections. One can choose options
presented in the general scheme (see Figure ??) for a construction of particular
classification algorithm.

[...] [This part of the article is missing.]

17 Summary

In the paper we discussed some methods for extracting laws from data. We pre-
sented some techniques based on standard rough set methods (see [44], [45], [52])
like reduct set and rule set computation. We also described dynamic techniques
e.g. dynamic reducts and dynamic rules computation (see [3], [4], [5], [6]), that
give potentially more general decision rules more capable to new cases classi-
fication. For case of larger data tables we proposed a genetic algorithm based
method for computation of a approximate reduct set. We also proposed some
discretization algorithms of real value attributes that can be used in the process
of data preprocessing. All presented methods can be successfully used together
in order to construct a good classification algorithms.
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3. Bazan, J., Skowron, A. and Synak, P.: Discovery of Decision Rules from Experi-
mental Data, Proceedings of the Third International Workshop on Rough Sets and
Soft Computing. San Jose, California (1994) 526–533.

4. Bazan, J., Skowron, A. and Synak, P.: Dynamic reducts as a tool for extract-
ing laws from decision tables, Proceedings of the Eighth International Symposium
on Methodologies for Intelligent Systems (ISMIS’94), Lecture Notes in Artificial
Intelligence 869. Berlin: Springer-Verlag (1994) 346–355,.

5. Bazan, J., Skowron, A. and Synak, P.: Market data analysis: A rough set approach.
ICS Research Report 6/94, Warsaw University of Technology (1994).

6. Bazan, J.: Dynamic reducts and statistical inference, Proceedings of Information
Processing and Management of Uncertainty on Knowledge Based Systems (PMIU-
96), July 1-5, Granada, Spain, Universidad de Granada, vol. III, (1996) 1147–1152.

7. Bazan, J., Nguyen, Hung, S., Nguyen, Tuan, T., Skowron, A., Stepaniuk, J.: Syn-
thesis of Decision Rules for Object Classification, Or?owska E. (ed.): Incomplete
Information: Rough Set Analysis. Heidelberg: Physica-Verlag (1998) 23-57.

8. Bazan, J.: Discovery of Decision Rules by Matching New Objects Against Data Ta-
bles. Proceedings of the First International Conference on Rough Sets and Current
Trends in Computing (RSCTC-98), Warsaw, June 22-26 (1998), Lecture Notes in
Artificial Intelligence 1424. Berlin: Springer-Verlag (1998) 521-528.

9. Bazan, J.: A Comparison of Dynamic and non-Dynamic Rough Set Methods for
Extracting Laws from Decision Table, Polkowski L., Skowron A. (eds.): Rough
Sets in Knowledge Discovery. Heidelberg: Physica-Verlag (1998) 321-365.

10. Bloedorn, E., Michalski, R. S.: Data Driven Constructive Induction in AQ17-PRE:
A Method and Experiments, Proceedings of the Third International Conference on
Tools for AI. San Jose, CA (1991)

11. Brown, E. M.: Boolean reasoning. Dordrecht: Kluwer (1990).

12. Brownlee, K. A.: Statistical theory and methodology in science and engineering.
New York: John Wiley&Sons (1965).

13. Cestnik, B., Kononenko, I., Bratko, I.: ASSISTANT 86: A Knowledge Elicitation
Tool for Sophisticated Users, Proceedings of EWSL-87. Bled, Yugoslavia (1987)
31–47.

14. Clark, P., Niblett, T.: The CN2 Induction Algorithm, Machine Learning 3. Kluwer
Academic, Boston, MA (1989) 261–284.

15. Cykier, A.: Prime Implicants of Boolean Functions - Applications and Methods
of Computations (in Polish), MSc Thesis, University of Warsaw, Warsaw, Poland
(1997).

16. Downton, A. C., Tregidgo, R. W. S., Leedham, C. G.: Recognition of handwritten
British postal addresses. From Pixels to Features III. Frontiers in Handwriting
Recognition North-Holland (1992) 129–144.

17. Dzeroski, S.: Handling Noise in Inductive Logic Programming. MS Thesis, Dept.
of EE and CS, University of Ljubljana, Slovenia (1991).

18. Fisz, M.: Probability theory and mathematical statistics, New York (1961).

19. Fahlman, S. E., Lebiere, C.: The Cascade-Correlation Learning Architecture, in
Advances in Neural Information Processing Systems, vol. II. Morgan Kaufmann,
San Mateo, CA (1990).

20. Friedman, J.: Smart user’s guide. Technical Report 1. Laboratory of Computa-
tional Statistics, Department of Statistics, Stanford University (1984).

21. Goldberg D. E.: GA in Search, Optimisation, and Machine Learning. Addison-
Wesley (1989).



Rough Set Algorithms in Classification Problem 37

22. Grzyma la-Busse, J. W.: LERS - a system for learning from examples based on
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34. Mienko, R., S lowiński, R., Stefanowski, J., Susmaga, R.: RoughFamily - software
implementation of rough set based data analysis and rule discovery techniques,
Tsumoto S. (ed.), Proceedings of the Fourth International Workshop on Rough
Sets, Fuzzy Sets and Machine Discovery, Tokyo, November 6-8 (1996), 437–440.

35. Mollestad, T.: A rough set approach to default rules data mining. PhD Thesis,
supervisor J. Komorowski, Norvegian Institute of Technology, Trondheim, Norway
(1996)

36. Muggelton, S. (ed.): Inductive logic programming. Academic Press (1992).
37. Nguyen, H. S., Nguyen, S. H., Skowron, A.: Searching for features defined by hyper-

planes, Z.W. Ras, M. Michalewicz (ed.), Proceedings of Ninth International Sym-
posium on Methodologies for Intelligent Systems (ISMIS-96), Zakopane, Poland,
June 10-13, (1996). Lecture Notes in Artificial Intelligence vol. 1079, Springer,
Berlin (1996) 366–375; see also: ICS Research Report 16/95, Warsaw University
of Technology.

38. Nguyen, S. H., Nguyen, H. S.: Some efficient algorithms for rough set meth-
ods, Proceedings Information Processing and Management of Uncertainty on
Knowledge Based Systems (IPMU-96), July 1-5, Granada, Spain, Universidad de
Granada, vol. III, (1996) 1451–1456.

39. Nguyen, H. S., Skowron, A.: Quantization of real value attributes, Proceedings of
Second Joint Annual Conf. on Information Sciences, Wrightsville Beach, North
Carolina, September 28 - October 1, USA (1995) 34–37.



38 Bazan, Nguyen, Nguyen, Synak and Wróblewski
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55. S lowiński, R., Stefanowski, J.:’RoughDAS’ and ’RoughClass’ software implemen-
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65. Wróblewski J.: Covering with reducts – a fast algorithm for rule generation, Pro-
ceedings of RSCTC’98, Springer-Verlag (LNAI 1424), Berlin Heidelberg (1998)
402 – 407.

66. Ziarko, W., Shan, N.: An incremental learning algorithm for constructing decision
rules, Proceedings of the International Workshop on Rough Sets and Knowledge
Discovery. Banff. (1993) 335–346.

67. Ziarko, W.: Variable Precision Rough Set Model. Journal of Computer and System
Sciences 40 (1993) 39–59.

This article was processed using the LATEX macro package with LMAMULT style


