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Abstract. In a rough set approach to knowledge discovery problems,
a set of rules is generated basing on training data using a notion of
reduct. Because a problem of finding short reducts is NP-hard, we have
to use several approximation techniques. A covering approach to the
problem of generating rules based on information system is presented
in this article. A new, efficient algorithm for finding local reducts for
each object in data table is described, as well as its parallelization and
some optimization notes. A problem of working with tolerances in our
algorithm is discussed. Some experimental results generated on large
data tables (concerned with real applications) are presented.

1 Introduction

Rough set expert systems base on the notion of a reduct ([7], [8]), a minimal
subset of attributes which is sufficient to discern between objects with different
decision values. A set of short reducts can be used to generate rules ([1]). A prob-
lem of short reducts generation is NP-hard, but an approximate algorithm (like
the genetic one described in [9], [4] and implemented successfully - see [6]) can
be used to obtain reducts in reasonable time. On the other hand, rules generated
basing on reducts are often too specific and cannot classify new objects. Another
types of reducts have been considered to improve efficiency on new objects (see
[2]). One of the methods is to calculate reducts basing on a single object.

Let A = (U,A ∪ {d}) be an information system (see [8]), where U - set of
objects, A - set of attributes, d - decision.

Definition: A local reduct R(oi) ⊆ A (or a reduct relative to decision and
object oi ∈ U ; oi is called a base object) is a subset such that:

a) ∀ oj ∈ U , d(oi) 6= d(oj) =⇒ ∃ ak ∈ R: ak(oi) 6= ak(oj)
b) R is minimal with respect to inclusion.
A classical reduct will be referred to as global reduct. A rule generated by a

local reduct is concerned with the base object and may not recognize any other
object from U . To assure that a set of rules will recognize (at least) all objects
from the training set, we have to generate a local reduct for every object. A
simple algorithm checking whether a subset is a local superreduct works at a



time complexity of O(mn): we have to compare our base object with all other
objects and check whether condition a) (see local reduct definition) holds. It takes
O(mn2) time to do this for all objects (when we are looking for a local reduct
for every object), where n = number of objects, m = number of attributes. This
time complexity is not acceptable for large data tables. A fast approximation
algorithm for local reducts generation is presented in the next section. In sections
3 and 4 some related topics, concerned with parallelization of the algorithm and
dealing with tolerance are discussed. In section 5 some experimental results are
presented.

2 Covering algorithm

An algorithm presented below realizes the following objective: assuming the
information system is consistent, find a family of subsets R1, R2,. . . Rk such
that for any object oi from U at least one Rj is a local reduct (we will say,
that Rj covers oi). We will look for possibly small family R1,. . . Rk, i.e. we will
prefer these subsets which cover possibly many objects. We assume, that these
subsets reflect regularities in data and generate more general rules - it means
better classification of new samples and less memory required to store rules.

1. Let σ be a random permutation of attributes.
2. Let R = A and N1,. . . Nn - a table of numbers of local reducts found for

each object. Set Nj = 0.
3. Test whether R is a local reduct for any object. If so, increment Ni for these

objects and store rules.
4. Let R = R−ai, where ai - the first attribute from R. Calculate a number Mi

of these objects, for which R is a (super)reduct, and which are not covered
by reducts found previously. Let R = R+ ai.

5. Continue step 4. with the next attribute from R. Finish after collecting
numbers Mi for all attributes.

6. Find the maximal number among Mi; if there are more than one such a
number - get the first one with respect to the permutation σ. Let aj - an
attribute associated with this maximum. Let R = R− aj .

7. Continue from 3. until R is empty.
8. If there is at least one uncovered object - let R = A, continue from 4.

Lemma. The algorithm described above generates a covering for all objects
in at most n = |U | cycles (by ”cycle” we mean one sequence of steps from 2 to
8).

Proof. We will prove, that in one cycle at least one uncovered object is
covered by newly produced reduct. When we find out, that a set R is a local
superreduct for a number of objects not covered so far in step 6. of the algorithm,
there are two possibilities: a) all Mi are equal to 0, but it means that R is a local
reduct for all these objects (because it is a superreduct and none of its subsets is
a superreduct) so we have covered some new objects; b) there exists an Mi > 0,
i.e. at least one subset of R is a superreduct for Mi objects not covered so far -



we continue from step 4. If our subset R has two attributes, possibility b) means,
that there exists a local reduct with one attribute (a superreduct with only one
attribute must be a reduct). So, in one cycle (starting from R = A, which is a
local superreduct for all objects) we either realize possibility a) or, in the worst
case, achieve a reduct containing only one attribute.

We need to have a method of determining whether a subset is a superreduct
to complete our algorithm.

1. Sort a table of objects using attribute values (for attributes belonging to R).
2. Scan the table of sorted objects one by one. Our objects are divided into

groups with equal values on attributes (abstract classes of indiscernibility
relation generated by R, see [8]).

3. If a group has an uniform value of decision - it means that R is a local
superreduct for objects belonging to this group. If not - R is not a local
superreduct for these ones.

Since we may use a fast method of sorting, our algorithm has the complexity
of mn log (n), where n = number of objects, m = number of attributes.

3 Parallel algorithm and practical notes

The algorithm described in the previous section covers all objects by at least
one reduct. On the other hand, the more reducts for each object we find, the
more rules we can generate. Since the algorithm is deterministic for a given
permutation σ, we have the following possibilities:

1. We may choose a set of p permutations σ1, . . . σp and generate p cover-
ings using this algorithm in parallel on p machines. When permutations are
different, the obtained coverings usually are different too.

2. We may do the same on one machine in sequential way. In this case we can
perform an additional optimization: at each stage of algorithm we look for
covering for only these objects which are covered in minimal degree during
the previous stages.

3. We may use an evolutionary algorithm to find the best permutation - i.e.
the permutation generating a covering using a minimal set of possibly short
reducts. An order-based genetic algorithm (see [3], [10]) can be used in case
of sequential as well as parallel computations.

When we check whether a subset R is a local superreduct for any object, we
can easily check whether it is a global superreduct (R is a global superreduct
⇐⇒ R is a local superreduct for all objects). On the other hand, the algorithm
of finding global reducts described in [4] and [11] uses a structure called ”reduct
store” containing all known global superreducts of information system. Thus, we
can check whether R is known as a global superreduct before we start to sort



our object set, as well as we can add R to this structure when we find out that
R is a global superreduct. Moreover, the same structure can be used by many
agents in parallel implementation (each agent calculates covering for different
permutation) and by one specialized agent calculating global reducts.

4 Tolerance

We use local reducts to generate rules which are more general than these gener-
ated basing on general reducts. On the other hand, these rules may still be too
specific - especially when we work on numerical data. One of the ways to manage
this problem is to use a discretization technique (see e.g. [5]). Alternatively, we
can use a tolerance measure, which allows us to treat two different (but close)
values as equal.

An algorithm presented in section 2. can be easily adopted to this new situ-
ation, in case a tolerance relation is transitive. In this case we can sort a set of
objects and divide it into classes of this relation - then continue with the stan-
dard algorithm. Alternatively, we can initially replace attributes‘ values with
their representatives (found by e.g. methods of scalar quantization or discretiza-
tion).

Unfortunately, many tolerance relations are not transitive, and we cannot
simply sort data and check adjacent pairs of objects. More research is needed to
use our algorithm in this case.

5 Experimental results

The algorithm described in section 2. was implemented and tested on several
information systems used in real applications - results are shown in the table
presented below.

Size: obj × attr #red Time [sec]
4,492 × 36 1 13

10 49
24,000 × 10 1 25
22,000 × 27 1 90

5 1600
47,000 × 28 1 360

Calculations were performed on Pentium-200 machine. The first data set is
the ”Satellite image” database, the second is the ”Shuttle” database. The column
”#red” indicates how many reducts (at least) we found for each object.

The results show, that our new method is relatively fast, even for large data
tables (finding local reducts for each object using the previous methods takes
many hours for tables with number of objects greater than 20,000), especially
when we are interested in just a covering of objects. Actually, when we cover
objects by at least one reduct, an average number of reducts covering an object
is usually equal to about 3.5.



6 Conclusions and future work

We have presented a covering approach to rule generation problem and an ef-
ficient algorithm for finding local reducts for a set of objects. A computation
time for this algorithm is close to the time of global reduct finding ([4]). Our
new method is fast, and it should generate more general rules - a comparison of
efficiency of these rules generated in classical and a new way will be performed in
the future. Another direction of future research is to implement and test an evo-
lutionary algorithm (see section 3.) and a tolerance-based techniques. Moreover,
a parallel system has been not implemented so far.
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11. Wróblewski J., 1998. Genetic algorithms in decomposition and classification prob-
lem. In: L. Polkowski, A. Skowron (eds.). Rough Sets in Knowledge Discovery.
Physica Verlag, 1998.


