
A parallel algorithm for knowledge discovery system

Jakub Wróblewski

Institute of Mathematics
Warsaw University

Banacha 2, 02-097 Warsaw, Poland
e-mail: jakubw@jakubw.pl

http://www.jakubw.pl/about

Abstract.
A rough set based knowledge discovery system is presented. The sys-

tem is based on the decomposition of large data tables into smaller ones
in such a way that the approximation of global decision algorithm (related
to the whole table) from local ones (related to these smaller tables) can be
obtained. The set of these smaller tables can be considered separately and
the rules can be calculated in parallel. Then, a set of locally generated rules
can be collected for achieving the sufficient approximation of the global de-
cision algorithm. The so called ”templates” are presented as the efficient
generators of the smaller tables.

On the other hand, a rule generator for one table can be implemented
in parallel too. A system for efficient rule generating based on the notion
of reduct is presented. A fast, parallel algorithm for short reduct finding is
described. Moreover, since a genetic algorithm is used as a driving force of
the reduct generator, it can be implemented in parallel in natural way.

A parallel system of reduct finding is described and discussed. Experi-
ment results on large data tables are presented.

1 Introduction

Many problems connected with rule generation from data is NP-hard, so
there is no easy method to solve them in deterministic and complete way
in reasonable (non-exponential) time. One must use approximate methods
such as fast heuristics or evolutionary algorithms. These methods are de-
veloped and successfully implemented in knowledge discovery and expert

1



systems. Unfortunately, these methods are still too time-consuming, es-
pecially for large data tables. The method to manage this situation is to
perform parallel or distributed computations.

Rough set expert systems base on the notion of a reduct ([7], [8]), a min-
imal subset of attributes which is sufficient to discern between objects with
different decision values. A set of short reducts can be used to generate rules
([1]). A problem of short reducts generation is NP-hard, but an approxi-
mate algorithm (like the genetic one described in [9], [4] and implemented
successfully - see [6]) can be used to obtain reducts in reasonable time. On
the other hand, rules generated basing on reducts are often too specific and
cannot classify new objects. Another types of reducts have been considered
to improve efficiency on new objects (see [2]).

One of the methods is to calculate reducts basing on a single object.
Let A = (U,A ∪ {d}) be an information system (see [8]), where U - set of
objects, A - set of attributes, d - decision.

Definition: A local reduct R(oi) ⊆ A (or a reduct relative to decision
and object oi ∈ U ; oi is called a base object) is a subset such that:

a) ∀ oj ∈ U , d(oi) 6= d(oj) =⇒ ∃ ak ∈ R: ak(oi) 6= ak(oj)
b) R is minimal with respect to inclusion.
A rule generated by a local reduct is concerned with the base object and

may not recognize any other object from U . To assure that a set of rules will
recognize (at least) all objects from the training set, we have to generate
a local reduct for every object. A fast approximation algorithm for local
reducts generation is presented in [12]. Although very efficient for small and
medium sizes of database, this algorithm is not suitable for large ones (with
millions of records) because of computation time.

2 Decomposition problem

Our approach (see [4]) is based on the decomposition of large data tables
into smaller ones in such a way that the approximation of global decision
function (related to the whole table) from local ones (related to these smaller
tables) can be obtained. The set of these smaller tables can be treated as a
set of generators that used together with appropriate operators, like group-
ing, generalization, contraction, can be applied for achieving the sufficient
approximation of the global decision function.

The simplest way to perform such a decomposition is to do it randomly.
This method is relatively fast and gives satisfactory results (supposing the
random sample is large enough). On the other hand, in some cases (e.g.

2



when the database is accessible only using SQL) random sampling may be
hard.

In [3] the so called ”templates” was proposed to use as the decom-
position generators. Templates can be described as conjunctions of ”at-
tribute=value” expressions. We look for templates with high quality e.g.
characterized by the number of objects supporting a template times the
number of attribute=value pairs describing the template. This approach
allow us to decompose a given universe into a family of relatively large sub-
sets of objects sharing many common features. Hence these subsets can be
treated as subdomains. One can expect to find strong regularities (rules)
for these subdomains. In [3] a few algorithms for template generation are
presented. Results show, that expert system with decomposition based on
templates in some cases gives better classification algorithm than generated
from the whole table.

3 Parallelization

An algorithm presented in [12] realizes the following objective: assuming
the information system is consistent, find a family of subsets R1, R2,. . . Rk

such that for any object oi from U at least one Rj is a local reduct (we will
say, that Rj covers oi). We will look for possibly small family R1,. . . Rk, i.e.
we will prefer these subsets which cover possibly many objects. We assume,
that these subsets reflect regularities in data and generate more general rules
- it means better classification of new samples and less memory required to
store rules.

1. Let σ be a random permutation of attributes.

2. Let R = A and N1,. . . Nn - a table of numbers of local reducts found
for each object. Set Nj = 0.

3. Test whether R is a local reduct for any object (the method of deter-
mining for which objects R is superreduct is described in [12]). If so,
increment Ni for these objects and store rules.

4. Let R = R − ai, where ai - the first attribute from R. Calculate a
number Mi of these objects, for which R is a (super)reduct, and which
are not covered by reducts found previously. Let R = R+ ai.

5. Continue step 4. with the next attribute from R. Finish after collect-
ing numbers Mi for all attributes.

3



6. Find the maximal number among Mi; if there are more than one such
a number - get the first one with respect to the permutation σ. Let
aj - an attribute associated with this maximum. Let R = R − aj .
Continue from 3. until R is empty.

7. If there is at least one uncovered object - let R = A, continue from 4.

In general, this algorithm can be parallelized in three ways:

• We can perform the check from step 4 of algorithm in parallel
(for all i). Unfortunately, in this case we cannot use some opti-
mization techniques described in [12].

• We can test several permutations (step 1) in parallel.

• We can implement this algorithm sequentially and run it in paral-
lel for many subtables (generated randomly or using templates).
This way of parallelization is the most natural and easy to imple-
ment. Moreover, in this case the information exchange between
processes seems to be minimal.

4 Implementation and experimental results

A system with simple (random) table decomposition and local reduct-based
rule generator was implemented as experimental tool. We have considered
two ways of implementation: on Hitachi SR2201 parallel computer (8 pro-
cessing units), and on a number of PCs connected with LAN. The first
solution assures high communication speed between tasks, the second one
is more scalable, cheaper and easier to use in practice. Moreover, since
our algorithms use huge amount of integer computations, we cannot utilize
pseudo-vector processing capabilities of SR2201. Experiments show, that in
our kind of applications one processor of SR2201 acts much worse than fast
PC (computation time of one program run: SR2201 - 56 sec, Pentium 166 -
45 sec, PentiumII 300 - 29 sec.). Since we do not need to exchange any infor-
mation between processes except initial data and results, the communication
speed is not very important.

We have implemented our system on a number of PCs connected with
LAN. One PC acts as decomposition server: it has a direct access to data
source and produces random samples (subtables). These samples are sent by
LAN (in compressed form) to client machines where a rule generator (based
on fast, sequential algorithm for local reducts finding) is implemented. The
results are sent to another machine, where rule sets are combined.

4



We have used medium-size database (220 000 records) in our experi-
ments. The direct analysis of such database with local reduct rule generator
is possible, but very time-consuming: it takes more than 4 hour (Pentium
200) to obtain results. We have three profits from random decomposition:
first, since rule generation has time complexity of n log (n), the sum of
computation time on subtables is less than the time for large table; second,
from technical reasons (virtual memory mechanisms, caching etc.) the less
memory we occupy, the faster computations we perform; third, we can do it
in parallel. Below we present results of computation time when analysis pro-
cess is implemented in sequential way. The computation time (Pentium 200)
includes database random decomposition, compressing and decompressing
subtables, local reducts finding and rules generation, saving results on disk.

Sub. size (obj.) Sub. size No.sub. Dec.time Analysis time Total

No decomp. 4h 10min

10 000 233 KB 22 11min 53s 35s 24min 43s

30 000 698 KB 7 4min 26s 3min 40s 31min 6s

Sub. size (obj) - size of one subtable in objects;
Sub. size - size of compressed subtable;
No.sub. - number of subtables the database was decomposed into;
Dec.time - random decomposition time and subtable compressing;
Analysis time - time of local reduct generation for one subtable;
Total - total time of computation in sequential way.
Results show, that decomposition and parallel implementation of rules

generation system can speed up computations many times. A size of subta-
bles the database is decomposed into, depends on the number of available
machines. E.g. when we have only two machines, total time in case of 10000
objects in subtable is about 12 minutes and in case of 30000 objects it is
about 16 minutes. On the other hand, with 8 machines we have about 12
minutes and 8 minutes respectively.

5 Conclusions and future work

A parallel system of rules generation from large databases was presented.
Results show, that computation time is acceptable, even when hardware
background is cheap and not very complicated (a few PCs connected with
LAN).

Some topics, as usage of template-based decomposition and efficient
methods for combining results, needs more research and experiments. A

5



module for database access via SQL (in decomposition server) is to be im-
plemented too.

5.1 Acknowledgment

This work was supported by Polish State Committee for Scientific Research
grant #8T11C01011 and Research Program of European Union - ESPRIT-
CRIT2 No. 20288.

References

[1] Bazan J., Skowron A., Synak P., 1994. Dynamic reducts as a tool for
extracting laws from decision tables, Proc. of the Symp. on Methodolo-
gies for Intelligent Systems, Charlotte, NC, October 16-19, 1994, Lec-
ture Notes in Artificial Intelligence 869, Springer-Verlag, Berlin 1994,
346-355, also in: ICS Research Report 43/94, Warsaw University of
Technology.

[2] Bazan J., 1998. A Comparison of Dynamic and non-Dynamic Rough Set
Methods for Extracting Laws from Decision Tables. In: L. Polkowski,
A. Skowron (eds.). Rough Sets in Knowledge Discovery. Physica Verlag,
1998.

[3] Nguyen S. H., Polkowski L., Skowron A., Synak P., Wróblewski J.,1996.
Searching for Approximate Description of Decision Classes, Proc.of The
Fourth International Workshop on Rough Sets, Fuzzy Sets and Machine
Discovery, RSFD’96, November 6-8, 1996, Tokyo, Japan, pp:153-161.

[4] Nguyen S. H., Skowron A., Synak P., Wróblewski J., 1997. Knowledge
Discovery in Databases: Rough Set Approach. Proc. of The Seventh
International Fuzzy Systems Association World Congress, vol. II, pp.
204-209, IFSA97, Prague, Czech Republic.

[5] Nguyen H. S., Nguyen S. H., 1998. Discretization Methods in Data
Mining. In: L. Polkowski, A. Skowron (eds.). Rough Sets in Knowledge
Discovery. Physica Verlag, 1998.

[6] Øhrn A., Komorowski J., 1997. Rosetta - A rough set toolkit for analysis
of data. Proc. of Third International Join Conference on Information
Sciences (JCIS97), Durham, NC, USA, March 1 - 5, 3 (1997), pp. 403-
407.

6



[7] Pawlak Z., 1991. Rough sets: Theoretical aspects of reasoning about
data. Kluwer: Dordrecht 1991.

[8] Skowron A., Rauszer C., 1992. The Discernibility Matrices and Func-
tions in Information Systems. In: R. Slowiński (ed.): Intelligent Deci-
sion Support. Handbook of Applications and Advances of the Rough
Sets Theory. Kluwer: Dordrecht 1992, pp: 331 - 362.

[9] Wróblewski J., 1995. Finding minimal reducts using genetic algorithms.
Proc. of the Second Annual Join Conference on Information Sciences,
pp.186-189, September 28-October 1, 1995, Wrightsville Beach, NC.
Also in: ICS Research report 16/95, Warsaw University of Technology.

[10] Wróblewski J., 1996. Theoretical Foundations of Order-Based Genetic
Algorithms. Fundamenta Informaticae, vol. 28 (3, 4), pp: 423-430. IOS
Press, 1996.

[11] Wróblewski J., 1998. Genetic algorithms in decomposition and classi-
fication problem. In: L. Polkowski, A. Skowron (eds.). Rough Sets in
Knowledge Discovery. Physica Verlag, 1998.

[12] Wróblewski J., 1998. Covering with reducts - a fast algorithm for rule
generation. Proc. of the International Conference on Rough Sets and
Current Trends in Computing, RSCTC’98, pp: 402 - 407. Springer-
Verlag (Lecture Notes in AI 1424), 1998.

7


